【題目】已知平行四邊形中,,為的中點(diǎn),且△是等邊三角形,沿把△折起至的位置,使得.
(1)是線段的中點(diǎn),求證:平面;
(2)求證:;
(3)求點(diǎn)到平面的距離.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
試題分析:(1)取的中點(diǎn),連結(jié)、,可證,且,結(jié)合條件可得四邊形為平行四邊形,所以,由線面平行的判定定理即可得到平面;(2)由折疊前圖形可得,在四棱錐中,即有,由余弦定理和勾股定理可得,從而證得平面,由線面垂直的性質(zhì)可證得結(jié)論;(3)設(shè)點(diǎn)到平面的距離為,進(jìn)行定體積變換即可求得點(diǎn)到平面的距離.
試題解析:證明:(1)取的中點(diǎn),連結(jié)、,
因?yàn)?/span>為的中點(diǎn),故,且,
又,且
所以四邊形為平行四邊形,,
又平面,平面,故平面.
(2)折疊前,,,即,
在四棱錐中,即有,
在△中,,,由余弦定理得,
又,,由勾股定理的逆定理,得,,
又,從而平面,
平面,得.
(3)由(2)知,平面,
設(shè)點(diǎn)到平面的距離為,則由,
得,,
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一(1)班有男同學(xué)45名,女同學(xué)15名,老師按照分層抽樣的方法抽取4人組建了一個(gè)課外興趣小組.
(I)求課外興趣小組中男、女同學(xué)的人數(shù);
(II)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是從小組里選出一名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選出一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(III)在(II)的條件下,第一次做實(shí)驗(yàn)的同學(xué)A得到的實(shí)驗(yàn)數(shù)據(jù)為38,40,41,42,44,第二次做實(shí)驗(yàn)的同學(xué)B得到的實(shí)驗(yàn)數(shù)據(jù)為39,40,40,42,44,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:某污水處理廠要在一個(gè)矩形污水處理池()的池底水平鋪設(shè)污水凈化管道(是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng)污水凈化效果越好,設(shè)計(jì)要求管道的的接口是的中點(diǎn),分別落在線段上。已知米,米,記.
(1)試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)若,求此時(shí)管道的長(zhǎng)度;
(3)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知是定義在 上的奇函數(shù),且,當(dāng),時(shí),有成立.
(Ⅰ)判斷在 上的單調(diào)性,并加以證明;
(Ⅱ)若對(duì)所有的恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏,將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.
(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?
(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級(jí),為優(yōu);為輕度污染;為中度污染;為重度污染;為嚴(yán)重污染.一環(huán)保人士記錄去年某地某月10天的的莖葉圖如右.
(1)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良()的天數(shù);(按這個(gè)月總共30天計(jì)算)
(2)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量?jī)?yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五棱錐中,平面平面,且.
(1)已知點(diǎn)在線段上,確定的位置,使得平面;
(2)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com