12.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),若以F為圓心,F(xiàn)A為半徑的圓F交l于B、D,且FB⊥FD,△ABD的面積為$\sqrt{2}$,則圓F的方程為$(x-\frac{1}{2})^{2}+{y}^{2}$=2.

分析 設(shè)l與x軸相交于點(diǎn)M,由F為圓心,F(xiàn)A為半徑的圓F交l于B、D,且FB⊥FD,可得|FM|=|MB|=|MD|,可得|AF|=|BF|=$\sqrt{2}$p,利用△ABD的面積$\sqrt{2}$=$\frac{1}{2}$|BD|•$\sqrt{2}$p,解得p,即可得出.

解答 解:設(shè)l與x軸相交于點(diǎn)M,過點(diǎn)A作AN⊥l,垂足為N,則|AN|=|AF|.
∵F為圓心,F(xiàn)A為半徑的圓F交l于B、D,且FB⊥FD,
∴|FM|=|MB|=|MD|,
∴|AF|=|BF|=$\sqrt{2}$p,
∴△ABD的面積$\sqrt{2}$=$\frac{1}{2}$|BD||AN|=$\frac{1}{2}$|BD|•$\sqrt{2}$p=$\frac{1}{2}$×2p×$\sqrt{2}$p=$\sqrt{2}$,解得p=1.
∴圓F的方程為:$(x-\frac{1}{2})^{2}+{y}^{2}$=2.
故答案為:$(x-\frac{1}{2})^{2}+{y}^{2}$=2.

點(diǎn)評 本題考查了拋物線的定義標(biāo)準(zhǔn)方程及其性質(zhì)、弦長公式、圓的方程及其性質(zhì)、等腰直角三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.據(jù)氣象部門預(yù)報(bào),在距離某碼頭正西方向400km 處的熱帶風(fēng)暴中心正以20km/h 的速度向東北方向移動,距風(fēng)暴中心300km 以內(nèi)的地區(qū)為危險(xiǎn)區(qū),則該碼頭處于危險(xiǎn)區(qū)內(nèi)的時(shí)間為( 。
A.9 hB.10 hC.11 hD.12 h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線mx+ny+2=0(m>0,n>0)截得圓(x+3)2+(y+1)2=1的弦長為2,則$\frac{1}{m}+\frac{3}{n}$的最小值為( 。
A.4B.12C.16D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.拋物線x2=4y的焦點(diǎn)F的坐標(biāo)為(0,1),過F的直線與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為4,則線段AB的長度為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(x-2y)7的展開式中第四項(xiàng)的二項(xiàng)式系數(shù)是( 。
A.C${\;}_{7}^{4}$B.-8C${\;}_{7}^{3}$C.16C${\;}_{7}^{4}$D.C${\;}_{7}^{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.演繹推理“因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=2x是指數(shù)函數(shù),所以y=2x是增函數(shù)”,所得結(jié)論錯(cuò)誤的原因是( 。
A.推理形式錯(cuò)誤B.小前提錯(cuò)誤
C.大前提錯(cuò)誤D.小前提、大前提都錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列,a1=tan225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016=( 。
A.2 016B.-2 016C.3 024D.-3 024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個(gè)袋中有12個(gè)除顏色外完全相同的球,2個(gè)紅球,5個(gè)綠球,5個(gè)黃球,從中任取一球,不放回后再取一球,則第一次取出紅球時(shí)第二次取出黃球的概率為$\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一排共有9個(gè)座位,現(xiàn)有3人就坐,若他們每兩人都不能相鄰,每人左右都有空座,而且至多有兩個(gè)空座,則不同坐法共有( 。
A.18B.24C.36D.48

查看答案和解析>>

同步練習(xí)冊答案