【題目】已知函數(shù),是曲線的切線.

1)求實數(shù)a的值以及切點坐標(biāo);

2)求證:.

【答案】(1) ,切點為 (2)證明見解析

【解析】

1)求出的導(dǎo)數(shù),設(shè)出切點,可得切線的斜率,由切線方程可得的方程,解方程可得

2)先通過對 求導(dǎo)利用函數(shù)單調(diào)性,得到,再構(gòu)造函數(shù) ,求導(dǎo)利用函數(shù)單調(diào)性得到,即可求解。

解:(1)設(shè)切點為,則切線為

從而

消去a得:

,顯然單調(diào)遞減且,

所以時,,單增,時,,單減,故當(dāng)且僅當(dāng)時取到最大值,而.

所以,切點為

2)(方法一)記,,則

當(dāng)時,,單調(diào)遞增;

當(dāng)時,,單調(diào)遞減,

,∴,即

時,單調(diào)遞減;

時,單調(diào)遞增

,即,∴

由①②得.

(方法二)令

,易知上單增,且

所以當(dāng)時,,從而;

當(dāng)時,,從而,

單減,在單增,

的最小值為

所以當(dāng)時,,即,

,即,

(方法三)記,則調(diào)遞減

時,,單調(diào)遞增,

所以,故,等號成立當(dāng)且僅當(dāng)

,等號成立當(dāng)且僅當(dāng).

欲證,只需證明,即

,則

從而時,,單調(diào)遞減,

時,單調(diào)遞增,

所以,,可得,即

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)=1,2,…,6),如表所示:

試銷單價(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

q

84

83

80

75

68

已知

(Ⅰ)求出的值;

(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程

(參考公式:線性回歸方程中,的最小二乘估計分別為,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓與直線相切,點A為圓上一動點,軸于點N,且動點滿足,設(shè)動點M的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)P,Q是曲線C上兩動點,線段的中點為T,的斜率分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移1個單位,得到函數(shù)的圖像.

1)當(dāng)時,求的值域

2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C:(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分

(Ⅰ)求橢圓C的方程;

() 求ABP的面積取最大時直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩品牌計劃入駐某商場,該商場批準(zhǔn)兩個品牌先進場試銷天。兩品牌提供的返利方案如下:甲品牌無固定返利,賣出件以內(nèi)(含件)的產(chǎn)品,每件產(chǎn)品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每賣出一件產(chǎn)品再返利元。經(jīng)統(tǒng)計,兩家品牌在試銷期間的銷售件數(shù)的莖葉圖如下:

(Ⅰ)現(xiàn)從乙品牌試銷的天中隨機抽取天,求這天的銷售量中至少有一天低于的概率.

(Ⅱ)若將頻率視作概率,回答以下問題:

①記甲品牌的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;

②商場擬在甲、乙兩品牌中選擇一個長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,,且對任意的正整數(shù),都有,其中常數(shù).設(shè)

1)若,求數(shù)列的通項公式;

2)若,設(shè),證明數(shù)列是等比數(shù)列;

3)若對任意的正整數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)若,證明函數(shù)有唯一的極小值點;

(Ⅱ)設(shè),記函數(shù)的最大值為M,求使得a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:已知實數(shù),若關(guān)于不等式非空解集,則,寫出該命題的逆命題否命題、逆否命題,并判斷這些命題的真假.

查看答案和解析>>

同步練習(xí)冊答案