分析 (I)由S3+S4=2S2,得S3-S2+S4-S2=0,解得q=-2,由a1+a4=4-2a3,得a1=4.由此能求出數(shù)列{an}的通項(xiàng)公式.
(II)由${b_n}=\frac{1}{{{{log}_2}|{a_n}|}}=\frac{1}{n+1}$,得${b_n}{b_{n+1}}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,由個利用裂項(xiàng)求和法求出Tn=$\frac{n}{2(n+2)}$,從而得到$\frac{a}{2}<\frac{(n+2)(n+4)}{n}$恒成立,設(shè)$f(n)=\frac{(n+2)(n+4)}{n}=n+\frac{8}{n}+6$,由函數(shù)的單調(diào)性能求出實(shí)數(shù)a的取值范圍.
解答 解:(I)設(shè)數(shù)列{an}的公比為q,
由S3+S4=2S2,得S3-S2+S4-S2=0,
即有a3+a4+a3=0,得q=-2.
又a1+a4=4-2a3,則${a_1}+{(-2)^3}{a_1}=4-2×4{a_1}$,得a1=4.
故${a_n}=4×{(-2)^{n-1}}={(-2)^{n+1}}$.…(7分)
(II)由(I)知${b_n}=\frac{1}{{{{log}_2}|{a_n}|}}=\frac{1}{n+1}$,
則${b_n}{b_{n+1}}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$.∴${T_n}=(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{5})+…+(\frac{1}{n+1}-\frac{1}{n+2})=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2(n+2)}$.…(10分)
依題意有$\frac{an}{2(n+2)}<n+4$對于任意的正整數(shù)n恒成立,
即$\frac{a}{2}<\frac{(n+2)(n+4)}{n}$恒成立.
設(shè)$f(n)=\frac{(n+2)(n+4)}{n}=n+\frac{8}{n}+6$,
由于$y=x+\frac{8}{x}+6$在區(qū)間$[{1,2\sqrt{2}}]$上為減函數(shù),在區(qū)間$[{2\sqrt{2},+∞})$上為增函數(shù),
而$2<2\sqrt{2}<3$,則$f{(n)_{min}}=min\left\{{f(2),f(3)}\right\}=min\left\{{12,\frac{35}{3}}\right\}=\frac{35}{3}$,
故有$\frac{a}{2}<f{(n)_{min}}=\frac{35}{3}$,即有$a<\frac{70}{3}$.
所以實(shí)數(shù)a的取值范圍為$(-∞,\frac{70}{3})$.…(12分)
點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意裂項(xiàng)求和法和構(gòu)造法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{2}$,2) | D. | ($\sqrt{2}$,$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4031 | B. | $\frac{4031}{2}$ | C. | 4032 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com