【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線: 相切.
(1)求圓O的方程;
(2)若圓O上有兩點(diǎn)M、N關(guān)于直線x+2y=0對稱,且 ,求直線MN的方程.

【答案】
(1)解:依題設(shè),圓O的半徑r等于原點(diǎn)O到直線 的距離,

得圓O的方程為x2+y2=4


(2)解:由題意,可設(shè)直線MN的方程為2x﹣y+m=0

則圓心O到直線MN的距離

由垂徑分弦定理得: ,即

所以直線MN的方程為:


【解析】(Ⅰ)設(shè)圓O的半徑為r,由圓心為原點(diǎn)(0,0),根據(jù)已知直線與圓O相切,得到圓心到直線的距離d=r,利用點(diǎn)到直線的距離公式求出圓心O到已知直線的距離d,即為圓的半徑r,由圓心和半徑寫出圓O的標(biāo)準(zhǔn)方程即可;(Ⅱ)設(shè)出直線方程,利用點(diǎn)到直線的距離以及垂徑定理求出直線方程中的參數(shù),即可得到直線方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某消費(fèi)品專賣店的經(jīng)營資料顯示如下:
①這種消費(fèi)品的進(jìn)價(jià)為每件14元;
②該店月銷售量Q(百件)與銷售價(jià)格P(元)滿足的函數(shù)關(guān)系式為Q= ,點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開支4400元.

(1)求月銷量Q(百件)與銷售價(jià)格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中與函數(shù)y=x相等的函數(shù)是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實(shí)數(shù)a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a=20.5 , b=log43,c=log20.2,則(
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線c1:y2=2px(p>0)與曲線c2:(x﹣6)2+y2=36只有三個公共點(diǎn)O,M,N,其中O為坐標(biāo)原點(diǎn),且 =0.
(1)求曲線c1的方程;
(2)過定點(diǎn)M(3,2)的直線l與曲線c1交于A,B兩點(diǎn),若點(diǎn)M是線段AB的中點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足an+1>an , a1=1,且該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)g(x)=3x , h(x)=9x
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).

查看答案和解析>>

同步練習(xí)冊答案