【題目】某消費(fèi)品專(zhuān)賣(mài)店的經(jīng)營(yíng)資料顯示如下:
①這種消費(fèi)品的進(jìn)價(jià)為每件14元;
②該店月銷(xiāo)售量Q(百件)與銷(xiāo)售價(jià)格P(元)滿(mǎn)足的函數(shù)關(guān)系式為Q= ,點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開(kāi)支4400元.
(1)求月銷(xiāo)量Q(百件)與銷(xiāo)售價(jià)格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)最大?并求出最大值.
【答案】
(1)解:∵點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上,
∴ ,解得 .
同理可得 ,
∴Q=
(2)解:設(shè)該店月利潤(rùn)為L(zhǎng)元,則由題設(shè)得L=Q(P﹣14)×100﹣100,
由(1)得L= ,
= ,
當(dāng)14≤p≤20時(shí),Lmax=1650元,此時(shí)P= 元,
當(dāng)20<p≤26時(shí),Lmax= 元,此時(shí)P= 元,
故當(dāng)P= 時(shí),月利潤(rùn)最大,為1650元
【解析】(1)利用帶待定系數(shù)法即可求出函數(shù)的解析式,再根據(jù)銷(xiāo)售量Q(百件)與銷(xiāo)售價(jià)格P(元)滿(mǎn)足的函數(shù)關(guān)系式,即可月銷(xiāo)量Q(百件)與銷(xiāo)售價(jià)格P(元)的函數(shù)關(guān)系,(2)設(shè)該店月利潤(rùn)為L(zhǎng)元,則由題設(shè)得L=Q(P﹣14)×100﹣100,得到函數(shù)的解析式,分段求出函數(shù)的最值,比較即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線(xiàn)段A1P長(zhǎng)度的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)F(x)=g(x)+h(x)=ex , 且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若對(duì)任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,2 ]
B.(﹣∞,2 )
C.(﹣∞,2]
D.(﹣∞,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣3x2+a(6﹣a)x+c.
(1)當(dāng)c=19時(shí),解關(guān)于a的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實(shí)數(shù)a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinA+sinC=psinB且 .若角B為銳角,則p的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),交圓于兩點(diǎn), 在第一象限, 在第四象限.
(1)求拋物線(xiàn)的方程;
(2)是否存在直線(xiàn),使是與的等差中項(xiàng)?若存在,求直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是( )
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線(xiàn): 相切.
(1)求圓O的方程;
(2)若圓O上有兩點(diǎn)M、N關(guān)于直線(xiàn)x+2y=0對(duì)稱(chēng),且 ,求直線(xiàn)MN的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com