5.若tanα=-2,tan(α+β)=$\frac{1}{3}$,則tanβ的值是7.

分析 直接由tanβ=tan[(α+β)-α]展開兩角差的正切得答案.

解答 解:由tanα=-2,tan(α+β)=$\frac{1}{3}$,
得tanβ=tan[(α+β)-α]=$\frac{tan(α+β)-tanα}{1+tan(α+β)tanα}=\frac{\frac{1}{3}-(-2)}{1+\frac{1}{3}×(-2)}=7$.
故答案為:7.

點評 本題考查了兩角和與差的正切函數(shù),關(guān)鍵是“拆角配角”思想的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知a=2,b=3,B=150°,則sinA=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若b>a>0,則$\frac{{{b^2}-2ab+3{a^2}}}{{ab-{a^2}}}$的最小值為(  )
A.$2\sqrt{3}$B.3C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知半徑為1的扇形面積為$\frac{π}{3}$,則此扇形的周長為$\frac{2π}{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(α)=$\frac{{sin({π-α})cosα}}{{sin({\frac{π}{2}-α})}}+\frac{{sin({π+α})cos({2π-α})}}{{cosαtan({-α})}}$
(1)化簡f(α);
(2)若f(α)=$\frac{1}{5},-\frac{π}{2}$<α<0,求sinα•cosα,sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+(a-2)x-2,a∈R.
(1)若關(guān)于x的不等式f(x)≤0的解集為[-1,2],求實數(shù)a的值;
(2)當(dāng)a<0時,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x+1)n(n≥2,n∈N*)..
(1)當(dāng)n=3時,求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}$的值;
(2)設(shè)bn=$\frac{a_n}{{{2^{n-2}}}},{T_n}={b_2}+{b_3}+…+{b_n}$.
①求bn的表達式;
②使用數(shù)學(xué)歸納法證明:當(dāng)n≥2時,Tn=$\frac{{n({n+1})({n-1})}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(3cosx,-2cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.每次試驗的成功率為p(0<p<1),重復(fù)進行10次試驗,其中前6次都未成功,后4次都成功的概率為(1-p)6•p4

查看答案和解析>>

同步練習(xí)冊答案