9.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.下列命題正確的是( 。
A.若m?α,n?β,m⊥n,則α⊥βB.若α∥β,m⊥α,n∥β,則 m⊥n
C.若α⊥β,m⊥α,n∥β,則m∥nD.若α⊥β,α∩β=m,n⊥m,則n⊥β

分析 在A中,α與β相交或平行;在B中,推導(dǎo)出m⊥β,所以m⊥n;在C中,m與n相交、平行或異面;在D中,n與β相交、平行或n?β.

解答 解:由m,n是兩條不同的直線,α,β是兩個不同的平面,知:
在A中,若m?α,n?β,m⊥n,則α與β相交或平行,故A錯誤;
在B中,若α∥β,m⊥α,n∥β,則m⊥β,所以m⊥n,故B正確;
在C中,若α⊥β,m⊥α,n∥β,則m與n相交、平行或異面,故C錯誤;
在D中,若α⊥β,α∩β=m,n⊥m,則n與β相交、平行或n?β,故D錯誤.
故選:B.

點(diǎn)評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U={x∈Z|-5<x<5},集合S={-1,1,3},若∁UP⊆S,則這樣的集合P的個數(shù)共有(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若集合M={x∈N|x<6},N={x|(x-2)(x-9)<0},則 M∩N=( 。
A.{3,4,5}B.{x|2<x<6}C.{x|3≤x≤5}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=cos2x-sin2x的單調(diào)遞減區(qū)間為$[kπ,kπ+\frac{π}{2}](k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項和為Sn,設(shè)an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線y=x+2上.
(Ⅰ)求an,bn
(Ⅱ)若數(shù)列{bn}的前n項和為Bn,比較$\frac{1}{2{B}_{1}}$+$\frac{2}{3{B}_{2}}$+…+$\frac{n}{(n+1){B}_{n}}$與1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知A,B,C,D四點(diǎn)共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=$\frac{{2\sqrt{7}}}{7}$.
(Ⅰ)求sin∠DBC;
(Ⅱ)求AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=ax-4+1(a>0,a≠1)的圖象恒過定點(diǎn)P,P在冪函數(shù)f(x)的圖象上,則f(x)=$\sqrt{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c,d都是正實數(shù),且a+b+c+d=1,求證:$\frac{a^2}{1+a}$+$\frac{b^2}{1+b}$+$\frac{c^2}{1+c}$+$\frac{d^2}{1+d}$≥$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.全集為R,已知數(shù)集A、B在數(shù)軸上表示如圖所示,那么“x∉B”是“x∈A”的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊答案