【題目】2020年是我國垃圾分類逐步凸顯效果關(guān)鍵的一年.在國家高度重視,重拳出擊的前提下,高強度、高頻率的宣傳教育能有效縮短我國生活垃圾分類走入世界前列所需的時間,打好垃圾分類這場持久戰(zhàn)全民戰(zhàn)”.某市做了一項調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機各抽取15名學(xué)生,對垃圾分類知識進行問答,滿分為100分,他們所得成績?nèi)缦拢?/span>

城市中學(xué)學(xué)生成績分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

縣城中學(xué)學(xué)生成績分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績的平均分及分散程度;(不要求計算出具體值,給出結(jié)論即可)

2)從城市中學(xué)成績在80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績在90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

【答案】1)莖葉圖見解析,城市中學(xué)的平均分高于縣城中學(xué)平均分,城市中學(xué)學(xué)生成績比較集中,縣城中學(xué)學(xué)生成績比較分散;(2)分布列見解析,.

【解析】

1)縣城中學(xué)學(xué)生成績60段有5人,70分段有7人,80分段2人,90分段1人,共四個分數(shù)段;城市中學(xué)學(xué)生成績60段有0人,70分段有5人,80分段7人,90分段3人,共三個分數(shù)段;城市中學(xué)學(xué)生成績平均分高一些,也相對集中.

(2)城市中學(xué)成績 80分以上的學(xué)生共有10名,93分以上的學(xué)生共有3名, 從城市中學(xué)成績在80分以上的學(xué)生中抽取4名,因此,12,3,由古典概型計算各個概率,列出分布列,后求期望即可.

解:(1)莖葉圖如圖所示.

城市中學(xué)的平均分高于縣城中學(xué)平均分,

城市中學(xué)學(xué)生成績比較集中,縣城中學(xué)學(xué)生成績比較分散.

280分以上的學(xué)生共有10名,93分以上的學(xué)生共有3名,

由題可知,12,3

,

,

,

X的分布列為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線D的極坐標(biāo)方程為.

1)寫出曲線C的極坐標(biāo)方程以及曲線D的直角坐標(biāo)方程;

2)若過點(極坐標(biāo))且傾斜角為的直線l與曲線C交于M,N兩點,弦MN的中點為P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,正方形邊長為2,的中點.

1)求證:平面

2)求證:直線與平面所成角的正弦值為,求的長度;

3)若,線段上是否存在一點,使平面,若存在求的長度,若不存在則說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,PQ,MN,H,R是各條棱的中點.

①直線平面;②;③P,QH,R四點共面;④平面.其中正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年是我國垃圾分類逐步凸顯效果關(guān)鍵的一年.在國家高度重視,重拳出擊的前提下,高強度、高頻率的宣傳教育能有效縮短我國生活垃圾分類走入世界前列所需的時間,打好垃圾分類這場持久戰(zhàn)全民戰(zhàn)”.某市做了一項調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機各抽取15名學(xué)生,對垃圾分類知識進行問答,滿分為100分,他們所得成績?nèi)缦拢?/span>

城市中學(xué)學(xué)生成績分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

縣城中學(xué)學(xué)生成績分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績的平均分及分散程度;(不要求計算出具體值,給出結(jié)論即可)

2)記這30名學(xué)生成績80分以上為良好,80分以下為一般,完善表格,并判斷是否有99%的把握認為該城市中學(xué)和縣城中學(xué)的學(xué)生在了解垃圾分類知識上有差異?(結(jié)果保留三位小數(shù))

學(xué)生成績

良好

一般

合計

城市中學(xué)學(xué)生

縣城中學(xué)學(xué)生

合計

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是邊長為5的菱形,對角線(如圖1),現(xiàn)以為折痕將菱形折起,使點達到點的位置,棱,的中點分為,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長度的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左、右焦點分別為、,離心率為,點P是橢圓C上的一個動點,且面積的最大值為.

1)求橢圓C的方程;

2)橢圓Cx軸交于AB兩點,直線與直線l分別交于點M,N,試探究以為直徑的圓是否恒過定點,若是,求出所有定點的坐標(biāo):若否,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當(dāng)時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案