【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

【答案】(1)(2)

【解析】試題分析:(1)先明確函數(shù)定義域,再求函數(shù)導數(shù),根據(jù)導函數(shù)符號確定單調(diào)區(qū)間,(2)由導數(shù)幾何意義得切線斜率為,則得 .即得(3)不等式恒成立問題,一般轉(zhuǎn)化為對應函數(shù)最值問題:先利用導數(shù)研究函數(shù)最值: 時, 上單調(diào)遞增. 僅當時滿足條件,此時;當時, 先減后增, ,再變量分離轉(zhuǎn)化為,最后利用導數(shù)研究函數(shù)

最值,可得的最大值.

試題解析:解:(Ⅰ) ,則.

,所以上單調(diào)遞增.

,所以上單調(diào)遞減.

因為,所以,所以的方程為.

依題意, , .

于是與拋物線切于點,

.

所以

(Ⅲ)設,則恒成立.

易得

1)當時,

因為,所以此時上單調(diào)遞增.

①若,則當時滿足條件,此時;

②若,取

此時,所以不恒成立

不滿足條件;

2)當時,

,得,得

,得

所以上單調(diào)遞減,在上單調(diào)遞增.

要使得“恒成立”,必須有

“當時, ”成立.

所以.則

,得,得;

,得所以上單調(diào)遞增,在上單調(diào)遞減,

所以,當時,

從而,當時, 的最大值為.

綜上, 的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面內(nèi)有兩定點A、B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A、B為焦點的橢圓”,那么(
A.甲是乙成立的充分不必要條件
B.甲是乙成立的必要不充分條件
C.甲是乙成立的充要條件
D.甲是乙成立的非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標方程化為直角坐標方程;

(Ⅱ)若直線與曲線相交于, 兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求的單調(diào)區(qū)間;

)設函數(shù)在點處的切線為,直線軸相交于點.若點的縱坐標恒小于1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)設n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間( )內(nèi)存在唯一的零點;
(Ⅱ)設n=2,若對任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左、右焦點,以坐標原點O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,則當△PF1F2的面積等于a2時,雙曲線的離心率為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程 =1所表示的圖形是焦點在y軸上的雙曲線,命題q:復數(shù)z=(m﹣3)+(m﹣1)i對應的點在第二象限,又p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:

做不到“光盤”

能做到“光盤”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時 ,若f(x)≥a+1對一切 x≥0成立,則a的取值范圍為

查看答案和解析>>

同步練習冊答案