20.如圖,在四棱錐P-ABCD中,E,F(xiàn),G分別是PB,AB,PC的中點,若四邊形ABCD是平行四邊形.求證:平面EFG∥平面PAD.

分析 由中位線定理得EF∥AP,EG∥BC∥AD,故而平面EFG∥平面PAD.

解答 證明:∵E,F(xiàn),G分別是PB,AB,PC的中點,
∴EF∥PA,EG∥BC,
∵四邊形ABCD是平行四邊形,
∴BC∥AD,
∴EG∥AD,
又EF?平面EFG,EG?平面EFG,EF∩EG=E,AP?平面PAD,AD?平面PAD,AP∩AD=A,
∴平面EFG∥平面PAD.

點評 本題考查了面面平行的判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sin+θcosθ=$\frac{1}{2}$,0<θ<π,tan2θ=$\frac{3\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,點E在棱PD上,且PE=2ED.
(1)求證:平面PCD⊥平面PBC;
(2)求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分別是BC、AP的中點,則異面直線AC與DE所成角的大小為$arccos\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a<-1<b<0<c<1,則下列不等式成立的是( 。
A.b2<c<a2B.ab+$\frac{1}{ab}$<cC.$\frac{1}$<$\frac{1}{a}$<$\frac{1}{c}$D.b2>ab-bc+ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在菱形ABCD中,A=60°,AB=2$\sqrt{3}$,將△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小為120°,則三棱錐P-BCD的外接球體積為(  )
A.$\frac{28\sqrt{7}}{3}$πB.28$\sqrt{7}$πC.$\frac{32}{3}$πD.4$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a3,a2+1,a1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}}$+2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知圓C:(x-1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=2;設(shè)EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥$\frac{π}{2}$,則|EF|的最小值=4$\sqrt{2}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分別是C1D1、CD的中點,則異面直線A1N和B1M所成角的余弦值為( 。
A.$\frac{\sqrt{30}}{10}$B.0C.$\frac{\sqrt{15}}{10}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案