10.長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分別是C1D1、CD的中點(diǎn),則異面直線A1N和B1M所成角的余弦值為( 。
A.$\frac{\sqrt{30}}{10}$B.0C.$\frac{\sqrt{15}}{10}$D.$\frac{1}{6}$

分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能示求出異面直線A1N和B1M所成角的余弦值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
∵長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分別是C1D1、CD的中點(diǎn),
∴A1(2,0,1),N(0,1,0),B1(2,2,1),M(0,1,1),
$\overrightarrow{{A}_{1}N}$=(-2,1,-1),$\overrightarrow{{B}_{1}M}$=(-2,-1,0),
設(shè)異面直線A1N和B1M所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}N}•\overrightarrow{{B}_{1}M}|}{|\overrightarrow{{A}_{1}N}|•|\overrightarrow{{B}_{1}M}|}$=$\frac{3}{\sqrt{6}•\sqrt{5}}$=$\frac{\sqrt{30}}{10}$.
∴異面直線A1N和B1M所成角的余弦值為$\frac{\sqrt{30}}{10}$.
故選:A.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,E,F(xiàn),G分別是PB,AB,PC的中點(diǎn),若四邊形ABCD是平行四邊形.求證:平面EFG∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{4}{|x|+2}$-1的定義域是[a,b](a,b為整數(shù)),值域是[0,1],請(qǐng)?jiān)诤竺娴南聞澗上寫(xiě)出所有滿(mǎn)足條件的整數(shù)數(shù)對(duì)(a,b)(-2,0),(-2,1),(-2,2),(-1,2),(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{k}{x}$(k>0),xOy平面上兩點(diǎn)A,B的坐標(biāo)分別為(-1,f(1)),(3,f(-3)),且滿(mǎn)足$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
(1)求兩點(diǎn)A、B的坐際:
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{2}^{n}}{{2}^{2n+1}-3×{2}^{n}+1}$,且數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}滿(mǎn)足a1=1,an+1=$\frac{n+1}{n}$an+n+1,n∈N*,且前n項(xiàng)和為Sn,則$\frac{{S}_{n}}{n}$-$\frac{1}{2}$an取最大值時(shí)n的值為1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A={1,2,3,4,5},B={1,3,5,7,9},C=A∩B,則集合C的子集的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)的和為Sn,a1=-1,a2=2,滿(mǎn)足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),則a100=9998.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1;
(3)求證:平面A1BC⊥平面CDB1

查看答案和解析>>

同步練習(xí)冊(cè)答案