【題目】已知函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)求證: .

【答案】(Ⅰ)上都是增函數(shù) (Ⅱ)證明見解析

【解析】試題分析】(1)先對題設條件中函數(shù)解析式進行求導,再構造函數(shù)對所求得的導函數(shù)的值的符號進行判定;(2)先構造函數(shù),再對其求導得到,求出導函數(shù)的零點,得到最小值為0,從而證得然后借助函數(shù)的單調(diào)性,分、三種情形進行分析推證,使得不等式獲證。

解:(Ⅰ)由已知的定義域為,

,

,則,得,

上是減函數(shù),在上是增函數(shù),

上都是增函數(shù)./span>

(Ⅱ)設,

,得,

上是減函數(shù),在上是增函數(shù),

,即.

①當時, ,

上是增函數(shù),

,即,∴.

②當時, ,∵上是增函數(shù),

,即,∴.

③當時,

由①②③可知,對一切,有,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(sin2x,2cos2x﹣1), =(sinθ,cosθ)(0<θ<π),函數(shù)f(x)= 的圖象經(jīng)過點( ,1).
(1)求θ及f(x)的最小正周期;
(2)當x∈ 時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數(shù)在30人或30人以下,每人需交費用為900元;若旅行團人數(shù)多于30人,則給予優(yōu)惠:每多1人,人均費用減少10元,直到達到規(guī)定人數(shù)75人為止.旅行社需支付各種費用共計15000元.
(1)寫出每人需交費用y關于人數(shù)x的函數(shù);
(2)旅行團人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司現(xiàn)提供兩種一年期投資理財方案,一年后投資盈虧的情況如下表:

投資股市

獲利

不賠不賺

虧損

購買基金

獲利

不賠不賺

虧損

概率

概率

(Ⅰ)甲、乙兩人在投資顧問的建議下分別選擇“投資股市”和“買基金”,若一年后他們中至少有一人盈利的概率大于,求的取值范圍;

(Ⅱ)若,某人現(xiàn)有萬元資金,決定在“投資股市”和“購買基金”這兩種方案中選擇出一種,那么選擇何種方案可使得一年后的投資收益的數(shù)學期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:
①冪函數(shù)f(x)= 的單調(diào)遞減區(qū)間是(﹣∞,0)∪(0,+∞);
②若函數(shù)f(x+2016)=x2﹣2x﹣1(x∈R),則函數(shù)f(x)的最小值為﹣2;
③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(﹣2)<f(a+1);
④若f(x)= 是(﹣∞,+∞)上的減函數(shù),則a的取值范圍是( , );
⑤既是奇函數(shù),又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R).
其中正確命題的序號有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(﹣x)+f(x)=0,f(x+4)=f(x)滿足,且x∈(﹣2,0)時,f(x)=2x+ ,則f(log220)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 是平面內(nèi)互相垂直的兩條直線,它們的交點為A,異于點A的兩動點B、C分別在 、 上,且BC= ,則過A、B、C三點圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案