【題目】已知 和 是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動(dòng)點(diǎn)B、C分別在 、 上,且BC= ,則過A、B、C三點(diǎn)圓的面積為( )
A.
B.
C.
D.
【答案】B
【解析】解答:由題意,l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,BC=3,∴過A、B、C三點(diǎn)的動(dòng)圓的圓心軌跡是以A為圓心, 為半徑的圓,∵過A、B、C三點(diǎn)的動(dòng)圓的圓的半徑為 ,∴過A、B、C三點(diǎn)的動(dòng)圓上的點(diǎn)到點(diǎn)A的距離為3,∴過A、B、C三點(diǎn)的動(dòng)圓所形成的圖形是以A為圓心,3為半徑的圓,∴過A、B、C三點(diǎn)的動(dòng)圓所形成的圖形面積為9π.故選:B.分析:本題主要考查了軌跡方程,解決問題的關(guān)鍵是通過所給條件分析得到圓心坐標(biāo)及半徑,然后求得圓的面積即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線,動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比等于.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)軌跡與軸負(fù)半軸交于點(diǎn),過點(diǎn)作不與軸重合的直線交軌跡于兩點(diǎn),直線分別交直線于點(diǎn).試問:在軸上是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn= ,Sn為數(shù)列{bn}的前n項(xiàng)和,證明:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知已知圓 經(jīng)過 、 兩點(diǎn),且圓心C在直線 上,求解:(1)圓C的方程;(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在直線2x-3y-1=0上的圓與x軸交于A(1,0),B(3,0)兩點(diǎn),則圓的方程為( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上的最小值為﹣1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 :,(1)求證:不論實(shí)數(shù) 取何值,直線 總經(jīng)過一定點(diǎn).為使直線不經(jīng)過第二象限(2)求實(shí)數(shù) 的取值范圍(3)若直線 與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求 的方程.
(1)求證:不論實(shí)數(shù) 取何值,直線 總經(jīng)過一定點(diǎn).
(2)為使直線不經(jīng)過第二象限,求實(shí)數(shù) 的取值范圍.
(3)若直線 與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求 的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com