【題目】已知函數(shù)對(duì)一切實(shí)數(shù),都有成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式恒成立;:當(dāng)時(shí),是單調(diào)函數(shù).如果滿足成立的的集合記為,滿足成立的的集合記為,求(為全集).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入萬(wàn)元滿足
(1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=3ax2﹣2(a+c)x+c(a>0,a,c∈R)
(1)設(shè)a>c>0,若f(x)>c2﹣2c+a對(duì)x∈[1,+∞]恒成立,求c的取值范圍;
(2)函數(shù)f(x)在區(qū)間(0,1)內(nèi)是否有零點(diǎn),有幾個(gè)零點(diǎn)?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使函數(shù)成立;
(1)請(qǐng)給出一個(gè)的值,使函數(shù)
(2)函數(shù)是否是集合M中的元素?若是,請(qǐng)求出所有組成的集合;若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】喜羊羊家族的四位成員與灰太狼、紅太狼進(jìn)行談判,通過(guò)談判他們握手言和,準(zhǔn)備一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成員必須相鄰,有多少種排法?
(2)要求灰太狼、紅太狼不相鄰,有多少種排法?
(3)記灰太狼和紅太狼之間的喜羊羊家族的成員個(gè)數(shù)為,求的概率分布表和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用節(jié)中100戶居民用戶的月均用水量的調(diào)查數(shù)據(jù),計(jì)算樣本數(shù)據(jù)的平均數(shù)和中位數(shù),并據(jù)此估計(jì)全市居民用戶月均用水量的平均數(shù)和中位數(shù).
9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0
2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5
2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9
2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4
3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0
22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9
5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7
5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3
5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8
7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形是直角梯形,,,且,是等邊三角形,,為的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com