【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.

(1)求角B的大小;

(2)若b=,求a+c的取值范圍.

【答案】見(jiàn)解析

【解析】(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,

∴(2a+c)cos B+bcos C=0,

∴cos B(2sin A+sin C)+sin Bcos C=0,

∴2cos Bsin A+cos Bsin C+sin Bcos C=0,

2cos Bsin A=-sin(B+C)=-sin A,

∴cos B=-.

∵0°<B<180°,

∴B=120°.

(2)由余弦定理,b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)22 (a+c)2當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),

∴(a+c)2≤4,∴a+c≤2,

a+c>b=,∴a+c∈(,2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買(mǎi)家庭轎車(chē)已不再是一種時(shí)尚.車(chē)的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車(chē)一族非常關(guān)心的問(wèn)題.某汽車(chē)銷(xiāo)售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車(chē)的使用年限 (單位:年)與所支出的總費(fèi)用 (單位:萬(wàn)元)有如下的數(shù)據(jù)資料:

使用年限

2

3

4

5

6

總費(fèi)用

2.2

3.8

5.5

6.5

7.0

若由資料知對(duì)呈線性相關(guān)關(guān)系.

(1)試求線性回歸方程= +的回歸系數(shù),

(2)當(dāng)使用年限為年時(shí),估計(jì)車(chē)的使用總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車(chē)去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車(chē).每車(chē)限坐名同學(xué)(乘同一輛車(chē)的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車(chē),則乘坐甲車(chē)的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)同時(shí)滿(mǎn)足:對(duì)于定義域上的任意,恒有;對(duì)于定義域上的任意 ,當(dāng)時(shí),恒有,則稱(chēng)函數(shù)為“理想函數(shù)”.在下列三個(gè)函數(shù)中:(1);(2);(3).“理想函數(shù)”有__________.(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

當(dāng)時(shí),求函數(shù)的值域;

當(dāng)在區(qū)間上為增函數(shù)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時(shí), .對(duì)于結(jié)論

(1)當(dāng)時(shí), ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為4,5,7;

(3)若,關(guān)于的方程有5個(gè)不同的實(shí)根,則;

(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.

說(shuō)法正確的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點(diǎn)為MGH的中點(diǎn)為N.

(1)請(qǐng)將字母F,GH標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由).

(2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為正整數(shù),數(shù)列滿(mǎn)足,,設(shè)數(shù)列滿(mǎn)足.

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;

(3)若數(shù)列是等差數(shù)列,前項(xiàng)和為,對(duì)任意的,均存在,使得成立,求滿(mǎn)足條件的所有整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,用符號(hào)表示不超過(guò)的最大整數(shù),若函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案