【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范圍.
【答案】見(jiàn)解析
【解析】(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0,
即2cos Bsin A=-sin(B+C)=-sin A,
∴cos B=-.
∵0°<B<180°,
∴B=120°.
(2)由余弦定理,得b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)2-2= (a+c)2,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),
∴(a+c)2≤4,∴a+c≤2,
又a+c>b=,∴a+c∈(,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買(mǎi)家庭轎車(chē)已不再是一種時(shí)尚.車(chē)的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車(chē)一族非常關(guān)心的問(wèn)題.某汽車(chē)銷(xiāo)售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車(chē)的使用年限 (單位:年)與所支出的總費(fèi)用 (單位:萬(wàn)元)有如下的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知對(duì)呈線性相關(guān)關(guān)系.
(1)試求線性回歸方程= +的回歸系數(shù),;
(2)當(dāng)使用年限為年時(shí),估計(jì)車(chē)的使用總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車(chē)去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車(chē).每車(chē)限坐名同學(xué)(乘同一輛車(chē)的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車(chē),則乘坐甲車(chē)的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)同時(shí)滿(mǎn)足:①對(duì)于定義域上的任意,恒有;②對(duì)于定義域上的任意, ,當(dāng)時(shí),恒有,則稱(chēng)函數(shù)為“理想函數(shù)”.在下列三個(gè)函數(shù)中:(1);(2);(3).“理想函數(shù)”有__________.(只填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅱ)當(dāng)在區(qū)間上為增函數(shù)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為上的偶函數(shù),當(dāng)時(shí), .對(duì)于結(jié)論
(1)當(dāng)時(shí), ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為4,5,7;
(3)若,關(guān)于的方程有5個(gè)不同的實(shí)根,則;
(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.
說(shuō)法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由).
(2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為正整數(shù),數(shù)列滿(mǎn)足,,設(shè)數(shù)列滿(mǎn)足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)若數(shù)列是等差數(shù)列,前項(xiàng)和為,對(duì)任意的,均存在,使得成立,求滿(mǎn)足條件的所有整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,用符號(hào)表示不超過(guò)的最大整數(shù),若函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com