15.在△ABC中,a=9,b=3$\sqrt{3}$; A=120°,則sin(π-B)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

分析 利用已知及正弦定理即可求得sinB,結(jié)合誘導(dǎo)公式即可得解.

解答 解:由正弦定理:$\frac{a}{sinA}=\frac{sinB}$,可得sinB=$\frac{bsinA}{a}$=$\frac{3\sqrt{3}×\frac{\sqrt{3}}{2}}{9}$=$\frac{1}{2}$,
解得:sin(π-B)=sinB=$\frac{1}{2}$.
故選:A.

點評 本題主要考查了正弦定理,誘導(dǎo)公式的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.Rt△ABC的角A,B,C所對的邊分別是a,b,c(其中c為斜邊),分別以a,b,c邊所在的直線為旋轉(zhuǎn)軸,將△ABC旋轉(zhuǎn)一周得到的幾何體的體積分別是V1,V2,V3,則( 。
A.V1+V2=V3B.$\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$
C.$V_1^2+V_2^2=V_3^2$D.$\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點分別為F1,F(xiàn)2,過F2的直線與雙曲線C的右支相交于P,Q兩點,若PQ⊥PF1,且|PF1|=|PQ|,則雙曲線的離心率e=( 。
A.$\sqrt{2}$+1B.2$\sqrt{2}$+1C.$\sqrt{5+2\sqrt{2}}$D.$\sqrt{5-2\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用區(qū)間表示下列集合:
(1)$\{x\left|{-\frac{1}{2}≤x<5\}}\right.$=[-$\frac{1}{2}$,5).
(2){x|x<1或2<x≤3}=(-∞,1)∪(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定下列命題:
①“若k>0,則方程x2+2x-k=0有實數(shù)根”的逆否命題;
②“若A=B,則sinA=sinB”的逆命題;
③“若$\frac{1}{a}<\frac{1}<0,則\;ab<b$2”的逆否命題;
④“若xy=0,則x,y中至少有一個為零”的否命題.
⑤“若$\frac{a}>\frac{a},則\;a<b<0$”的逆命題.
其中真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{x+2a-1}{{{x^2}+1}}$為奇函數(shù),及l(fā)g2=0.3010,lg2.015=0.3043.
(1)求實數(shù)a的值;
(2)證明函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù);
(3)求最小的正整數(shù)n,使得f(1+0.01×2n)+f(-2016)<f(0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A,B,C,D是球面上的四個點,其中A,B,C在同一圓周上,若D不在A,B,C所在的圓周上,則從這四點中的任意兩點的連線中取2條,這兩條直線是異面直線的概率等于( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)等比數(shù)列{an}的前n項和Sn,已知${a_3}=\frac{1}{8}$,且${S_2}+\frac{1}{16},{S_3},{S_4}$成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在正三棱柱ABC-A1B1C1中,E是AB的中點,D是CC1上一點.
(I)求證:A1B1∥平面DAB;
(Ⅱ)求證:A1B1⊥DE.

查看答案和解析>>

同步練習(xí)冊答案