【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=5,求:
(1)曲線上與直線y=2x-4平行的切線方程.
(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,,為中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).
(Ⅰ)證明:;
(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】社區(qū)服務(wù)是高中學(xué)生社會實(shí)踐活動的一個(gè)重要內(nèi)容,漢中某中學(xué)隨機(jī)抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時(shí)間,按,,,,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),得出男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務(wù)時(shí)間的頻率分布表
社區(qū)服務(wù)時(shí)間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計(jì) | 100 | 1 |
學(xué)生社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評價(jià)的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時(shí)間不少于20個(gè)小時(shí)才為合格,根據(jù)上面的統(tǒng)計(jì)圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時(shí)間達(dá)到合格程度與性別有關(guān),并說明理由.
(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時(shí)間估計(jì)全市9萬名高中學(xué)生參加社區(qū)服務(wù)時(shí)間的情況,并以頻率作為概率.
(i)求全市高中學(xué)生參加社區(qū)服務(wù)時(shí)間不少于30個(gè)小時(shí)的人數(shù).
(ⅱ)對我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評價(jià).
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義向量的“相伴函數(shù)”為,函數(shù)的“相伴向量”為,其中O為坐標(biāo)原點(diǎn),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè),求證:;
(2)已知且,求其“相伴向量”的模;
(3)已知為圓上一點(diǎn),向量的“相伴函數(shù)”在處取得最大值,當(dāng)點(diǎn)M在圓C上運(yùn)動時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線與圓C相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年學(xué)雷鋒日,某中學(xué)計(jì)劃從高中三個(gè)年級選派4名教師和若干名學(xué)生去當(dāng)學(xué)雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個(gè)年級的相關(guān)人員中抽取若干人組成文明交通宣傳小組,學(xué)生的選派情況如下:
年級 | 相關(guān)人數(shù) | 抽取人數(shù) |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅰ)求,的值;
(Ⅱ)若從選派的高一、高二、高三年級學(xué)生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級學(xué)生的概率;
(Ⅲ)若4名教師可去、、三個(gè)學(xué)雷鋒文明交通宣傳點(diǎn)進(jìn)行文明交通宣傳,其中每名教師去、、三個(gè)文明交通宣傳點(diǎn)是等可能的,且各位教師的選擇相互獨(dú)立.記到文明交通宣傳點(diǎn)的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線平面,垂足是,正四面體的棱長為,點(diǎn)在平面上運(yùn)動,點(diǎn)在直線上運(yùn)動,則點(diǎn)到直線的距離的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,側(cè)面SAB⊥底面ABCD,且SA=SB=AB=BC=2,AD=1.
(1)設(shè)E為棱SB的中點(diǎn),求證:AE⊥平面SBC;
(2)求平面SCD與平面SAB所成銳二面角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com