y=f(x)為R上的偶函數(shù),且滿足f(x+4)=f(4-x),f(6)=3,sinα=2cosα,則f(2sin2α+sinα•cosα)=________.

3
分析:由商的關(guān)系求出tanα=2,再由平方關(guān)系求出2sin2α+sinα•cosα的值,根據(jù)f(x+4)=f(4-x),f(6)=3,令x=2代入求解.
解答:∵sinα=2cosα,∴tanα=2,
2sin2α+sinα•cosα===2,
∵f(x+4)=f(4-x),令x=2代入得,∵f(2+4)=f(4-2)=f(2),
∵f(6)=3,∴f(2)=f(2sin2α+sinα•cosα)=3,
故答案為:3.
點評:本題主要考查了商的關(guān)系和平方關(guān)系的應(yīng)用,即由正切的值求有關(guān)三角函數(shù)式的值的轉(zhuǎn)化,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}與函數(shù)f(x),g(x),x∈R滿足條件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),
limn→∞
an
存在,求x的取值范圍;
(II)若函數(shù)y=f(x)為R上的增函數(shù),g(x)=f-1(x),b=1,f(1)<1,證明對任意n∈N*,an+1<an(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則y=f(x)為R上的單調(diào)增函數(shù)是f′(x)>0的
必要不充分
必要不充分
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)設(shè)y=f(x)為R上的奇函數(shù),y=g(x)為R上的偶函數(shù),且g(x)=f(x+1),g(0)=2.則f(x)=
2sin
π
2
x
2sin
π
2
x
.(只需寫出一個滿足條件的函數(shù)解析式即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為R上的偶函數(shù),且對任意x∈R,均有f(x+6)=f(x)+f(3)成立且f(0)=-2,當(dāng)x1,x2∈[0,3]且x1≠x2時,有
f(x1)-f(x2)x1-x2
>0,則下列命題中正確的有
 

①f(2013)=-2;
②y=f(x)圖象關(guān)于x=-6對稱;
③y=f(x)在[-9,-6]上為增函數(shù);
④方程f(x)=0在[-9,9]上有4個實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當(dāng)x≠0時,f′(x)+
f(x)
x
>0
,則關(guān)于x的函數(shù)g(x)=f(x)+
1
x
的零點個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案