若x∈(0,π),則函數(shù)f(x)=sinxcosx+
3
cos2x-
3
2
的單調(diào)遞減區(qū)間為
 
考點:三角函數(shù)中的恒等變換應用
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:直接對三角函數(shù)關系是進行恒等變換,把函數(shù)關系式變形成正弦型函數(shù),進一步利用整體思想求出函數(shù)的單調(diào)區(qū)間.
解答: 解:f(x)=sinxcosx+
3
cos2x-
3
2

=
1
2
sin2x+
3
2
cos2x

=sin(2x+
π
3

令:
π
2
+2kπ≤2x+
π
3
2
+2kπ

解得:
π
12
+kπ≤x≤
12
+kπ

由于:x∈(0,π),
所以:當k=0時,函數(shù)的單調(diào)遞減區(qū)間為:[
π
12
12
]
故答案為:[
π
12
,
12
]
點評:本題考查的知識要點:三角函數(shù)關系式的恒等變換,利用整體思想求函數(shù)的單調(diào)區(qū)間,屬于基礎題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=2sin(ωx-
π
4
)(ω>0)的圖象分別向左.向右各平移
π
4
個單位后,所得的兩個圖象的對稱軸重合,則ω的最小值為(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
1
i
在復平面內(nèi)對應的點的坐標為( 。
A、(0,-1)
B、(0,1)
C、(-1,0)
D、(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在不等式組
y≤x
0<x≤3
y>
1
x
,所表示的平面區(qū)域內(nèi)所有的整點(橫、縱坐標均為整數(shù)的點對稱為整點)中任取3個點,則這3個點恰能成為一個三角形的三個頂點的概率為( 。
A、
1
5
B、
4
5
C、
1
10
D、
9
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=-x3-3x+5零點所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(-1,0)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,其中a1=1,a7=13
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項和,當不等式λTn<n+8(n∈N*)恒成立時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
5
2
sinAsinx+cos2x(x∈R),且滿足cos(A+
π
4
)=-
2
10
,A∈(
π
4
,
π
2

(1)求sinA的值;
(2求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某個體服裝店經(jīng)營某種服裝,一周內(nèi)獲純利潤y(元)與該周每天銷售這種服裝的件數(shù)x之間的一組數(shù)據(jù)如下:
x3456789
y66697381899091
已知
7
i=1
x
2
i
=280
,
7
i=1
y
2
i
=45309,
7
i=1
xiyi
=3487,此時r0.05=0.754
(1)求
.
x
.
y
;
(2)判斷一周內(nèi)獲純利潤y與該周每天銷售件數(shù)x之間是否線性相關,如果線性相關,求出線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a b c∈R+,a+
2
b+
3
c=2
3
,記a2+b2+c2的最小值為m.
(Ⅰ)求實數(shù)rn;
(Ⅱ)若關于x的不等式|x-3|≥m和x2+px+q≥0的解集相同,求p的值.

查看答案和解析>>

同步練習冊答案