【題目】已知橢圓的右焦點(diǎn)為,過(guò)作互相垂直的兩條直線分別與相交于,,四點(diǎn).

(1)四邊形能否成為平行四邊形,請(qǐng)說(shuō)明理由;

(2)求的最小值.

【答案】(1)見(jiàn)解析.

(2).

【解析】

試題分析:(1)若四邊形為平行四邊形,則四邊形為菱形, ∴在點(diǎn)處互相平分,又的坐標(biāo)為顯然這時(shí)不是平行四邊形.

2)直線的斜率存在且不為零時(shí),設(shè)直線的方程為,與橢圓方程聯(lián)立,消去,利用韋達(dá)定理及弦長(zhǎng)公式

,.考慮當(dāng)直線的斜率不存在時(shí)和直線的斜率為零時(shí)情況得到的最小值

試題解析:設(shè)點(diǎn)

(Ⅰ)若四邊形為平行四邊形,則四邊形為菱形,

在點(diǎn)處互相平分,又F的坐標(biāo)為,由橢圓的對(duì)稱(chēng)性知垂直于軸,則垂直于軸,

顯然這時(shí)不是平行四邊形.

四邊形不可能成為平行四邊形.

(Ⅱ) 當(dāng)直線的斜率存在且不為零時(shí),設(shè)直線的方程為

消去得,

同理得,.∴,

,

當(dāng)直線的斜率不存在時(shí),則

當(dāng)直線的斜率為零時(shí),則

,∴的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】社會(huì)在對(duì)全日制高中的教學(xué)水平進(jìn)行評(píng)價(jià)時(shí),常常將被清華北大錄取的學(xué)生人數(shù)作為衡量的標(biāo)準(zhǔn)之一.重慶市教委調(diào)研了某中學(xué)近五年(2013年-2017年)高考被清華北大錄取的學(xué)生人數(shù),制作了如下所示的表格(設(shè)2013年為第一年).

年份(第年)

人數(shù)(人)

(1)試求人數(shù)關(guān)于年份的回歸直線方程

(2)在滿(mǎn)足(1)的前提之下,估計(jì)2018年該中學(xué)被清華北大錄取的人數(shù)(精確到個(gè)位);

(3)教委準(zhǔn)備在這五年的數(shù)據(jù)中任意選取兩年作進(jìn)一步研究,求被選取的兩年恰好不相鄰的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】找一組數(shù)據(jù)作為總體,自行設(shè)定樣本量,進(jìn)行多次簡(jiǎn)單隨機(jī)抽樣.觀察樣本量對(duì)估計(jì)總體平均數(shù)的影響,并試著解釋其中的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a為實(shí)數(shù),函數(shù),

,求不等式的解集;

是否存在實(shí)數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;

寫(xiě)出函數(shù)R上的零點(diǎn)個(gè)數(shù)不必寫(xiě)出過(guò)程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組為了研究晝夜溫差對(duì)一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(shù)(顆)

38

30

24

41

17

利用散點(diǎn)圖,可知線性相關(guān)。

(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請(qǐng)根據(jù)你求得的線性同歸方程預(yù)測(cè)4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);

(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.

(公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分16分)已知為實(shí)數(shù),函數(shù),函數(shù)

1)當(dāng)時(shí),令,求函數(shù)的極值;

2)當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立,若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 命題“若,則”的否命題是“若,則

B. 命題“,”的否定是“,

C. 處有極值”是“”的充要條件

D. 命題“若函數(shù)有零點(diǎn),則“”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是各項(xiàng)均為正數(shù)的等比數(shù)列,.

1)求的通項(xiàng)公式;

2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案