13.已知函數(shù)$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$.
(1)求該函數(shù)的最小正周期;
(2)求該函數(shù)的單調(diào)遞減區(qū)間;
(3)用“五點法”作出該函數(shù)在長度為一個周期的閉區(qū)間上的簡圖.

分析 (1)由已知利用兩角差的正弦函數(shù)公式可得y=3sin(2x-$\frac{π}{6}$),利用周期公式即可得解.
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,可得函數(shù)的單調(diào)遞減區(qū)間.
(3)根據(jù)五點法作圖的方法先取值,然后描點即可得到圖象.

解答 解:(1)∵$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$=3sin(2x-$\frac{π}{6}$),
∴函數(shù)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,
∴函數(shù)的單調(diào)遞減區(qū)間為:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z,
(3)列表:

x$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$$\frac{13π}{12}$
2x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
y030-30
描點、連線如圖所示:

點評 本題主要考查三角函數(shù)的圖象的作法,考查了正弦函數(shù)的單調(diào)性,利用五點法是解決三角函數(shù)圖象的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若關(guān)于x的不等式x2+mx+n<0的解集為{x|1<x<2},則m+n=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$短軸的一個端點到其一個焦點的距離是( 。
A.5B.4C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{b-c}{a}=\frac{sinA-sinC}{sinB+sinC}$.
(I)求B;
(II)若a+c=5,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a,b,c均為實數(shù),且a<b<0,則下列不等式成立的是(  )
A.a+c<b+cB.ac<bcC.a2<b2D.$\sqrt{-a}<\sqrt{-b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項和,bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}+{({-1})^n}{log_2}{a_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={1,2,3,5,7},B={x|(x-2)(x-5)≤0},則A∩B=( 。
A.{1,2,3}B.{2,3,5}C.{2,3,4,5}D.{1,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在(x+y+z)8的展開式中,所有形如x2yazb(a,b∈N)的項的系數(shù)之和是1792.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某研究所設(shè)計了一款智能機器人,為了檢驗設(shè)計方案中機器人動作完成情況,現(xiàn)委托某工廠生產(chǎn)500個機器人模型,并對生產(chǎn)的機器人進行編號:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的機器人樣本,試驗小組對50個機器人樣本的動作個數(shù)進行分組,頻率分布直方圖及頻率分布表中的部分數(shù)據(jù)如圖所示,請據(jù)此回答如下問題:
分組機器人數(shù)頻率
[50,60)0.08
[60,70)10
[70,80)10
[80,90)
[90,100]6
(1)補全頻率分布表,畫出頻率分布直方圖;
(2)若隨機抽的第一個號碼為003,這500個機器人分別放在A,B,C三個房間,從001到200在A房間,從201到355在B房間,從356到500在C房間,求B房間被抽中的人數(shù)是多少?
(3)從動作個數(shù)不低于80的機器人中隨機選取2個機器人,該2個機器人中動作個數(shù)不低于90的機器人記為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案