11.已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C存在與直線y=-2x垂直的切線,則實數(shù)m的取值范圍( 。
A.m>-2B.m>2C.$m>\frac{1}{2}$D.$m>-\frac{1}{2}$

分析 求出函數(shù)的導(dǎo)數(shù),運用兩直線垂直的條件可得ex-m=$\frac{1}{2}$有解,再由指數(shù)函數(shù)的單調(diào)性,即可得到m的范圍.

解答 解:函數(shù)f(x)=ex-mx+1的導(dǎo)數(shù)為f′(x)=ex-m,
若曲線C存在與直線y=ex垂直的切線,
即有ex-m=$\frac{1}{2}$有解,
即m=ex-$\frac{1}{2}$,
由ex>0,則m>-$\frac{1}{2}$.
則實數(shù)m的范圍為(-$\frac{1}{2}$,+∞).
故選:D.

點評 本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處切線的斜率,同時考查兩直線垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex(sinx+cosx)+a,g(x)=(a2-a+10)ex(a為常數(shù)).
(1)已知a=0,求曲線y=f(x)在(0,f(0))處的切線方程;
(2)當(dāng)0≤x≤π時,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用五種不同的顏色,給圖中的(1)(2)(3)(4)的各部分涂色,每部分涂一種顏色,相鄰部分涂不同顏色,則涂色的方法有( 。┓N.
A.240B.120C.60D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩學(xué)校各派出3名隊員,按事先排好的順序出場參加圍棋擂臺賽,雙方先由1號隊員進行第一局比賽,負者被淘汰,勝者再與負方2號隊員進行第二局比賽,…,直到一方隊員全被淘汰為止,已知甲隊的1號與乙隊的1、2、3號隊員比賽獲勝的概率分別為$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,甲隊的2號與乙隊的1、2、3號隊員比賽獲勝的概率分別為$\frac{2}{3}$、$\frac{1}{2}$、$\frac{1}{3}$
(1)在所有的比賽過程中,甲隊的1號、2號隊員都只參加一局比賽的概率;
(2)在所有的比賽過程中,將甲隊1號、2號隊員一共參加了的比賽的局數(shù)作為隨機變量ξ,求ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知三棱錐S-ABC的三條側(cè)棱長均為10,若∠BSC=α,∠CSA=β,∠ASB=γ且sin2$\frac{α}{2}+{sin^2}\frac{β}{2}={sin^2}\frac{γ}{2}$.
(1)求證:平面SAB⊥平面ABC
(2)若α=$\frac{π}{3},β=\frac{π}{2},γ=\frac{2π}{3}$,求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)曲線C:f(x)=alnx+bx,f'(x)表示f(x)導(dǎo)函數(shù).已知函數(shù)f(x)在x=1處有極值-1
(1)求f(x)的解析式.
(2)數(shù)列{an}滿足a1=1,an+1=2f′($\frac{1}{{a}_{n}}$)+3.求a2,a3,a4,用不完全歸納法猜想{an}的通項公式并用數(shù)學(xué)歸納法加以證明.
(3)在(2)的基礎(chǔ)上用反證法證明:數(shù)列{an}中不存在任何不同三項成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{3+i}{1-i}$在復(fù)平面內(nèi)所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在邊長為2的正方體ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是DD1的中點.
(1)求證:CF∥平面A1DE;
(2)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,最小正周期為π的偶函數(shù)是( 。
A.y=sinx+cosxB.y=cos4x-sin4xC.y=cos|x|D.y=$\frac{tanx}{1-ta{n}^{2}x}$

查看答案和解析>>

同步練習(xí)冊答案