【題目】設(shè)實數(shù),,滿足,,則下列不等式中不成立的是(

A.B.

C.D.

【答案】D

【解析】

根據(jù)不等式的性質(zhì),對每個選項進行證明,對選項D,進行特值檢驗,即可.

選項A,要證,只需證即可.

由題意可知,則成立,則成立.

要證,只需證

由題意可知,則,

又因為,所以,則,即成立

故選項A成立,不符合題意.

選項B,要證,只需證即可.

由題意可知,,成立.

所以成立,即.

要證,只需證,只需證

由題意可知,,,,.

所以成立,即成立.

故選項B成立,不符合題意.

選項C,要證,只需證即可.

由題意可知.

又因為,所以.

所以成立,即.

要證,只需證即可

由題意可知.

又因為,所以.

所以成立,即成立.

故選項C成立,不符合題意.

選項D,令,

,所以不成立,符合題意.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,且.

(Ⅰ)求證:;

(Ⅱ)求直線AB與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行道時,應(yīng)當減速慢行;遇行人正在通過人行道,應(yīng)當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(2)預(yù)測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式: , .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中,且, 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處的切線與y軸垂直.

1)若,求的單調(diào)區(qū)間;

2)若,成立,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓,其長軸長是短軸長的倍,過焦點且垂直于軸的直線被橢圓截得的弦長為.

1)求橢圓的方程;

2)點是橢圓上橫坐標大于的動點,點軸上,圓內(nèi)切于,試判斷點在何位置時的長度最小,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數(shù)的值及拋物線的準線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、、點,求兩條弦的弦長之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平頂山市公安局交警支隊依據(jù)《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個月內(nèi),機動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,把作為新數(shù)列的第一項,把)作為新數(shù)列的第項,數(shù)列稱為數(shù)列的一個生成數(shù)列.例如,數(shù)列的一個生成數(shù)列是.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項和.

1)寫出的所有可能值;

2)若生成數(shù)列滿足,求數(shù)列的通項公式;

3)證明:對于給定的的所有可能值組成的集合為

查看答案和解析>>

同步練習冊答案