【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且為棱的中點(diǎn),作于點(diǎn).

1)證明:平面;

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

【答案】(1)證明見詳解;(2).

【解析】

1)先證,結(jié)合已知條件,即可求證;

2)建立空間直角坐標(biāo)系,由二面角大小求得長度,再用線面角的定義即可求解.

1)因為平面,平面,故

又因為四邊形為矩形,故可得;

平面,且,

故可得平面;

又因為平面,故可得

又因為中點(diǎn),故

結(jié)合平面,

故可得平面,

又因為平面,則.

由題可知,又平面,

即證平面.

2)因為平面,且底面為矩形,

故可得兩兩垂直.

則以為坐標(biāo)原點(diǎn),分別為軸建立空間直角坐標(biāo)系,

如下圖所示:

不妨設(shè),故可得

由(1)中所得可知為平面的法向量,

容易知是平面的一個法向量.

又因為面與面所成二面角的大小為,

故可得,解得.

又因為平面,故可得即為所求.

中,.

與面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】男運(yùn)動員6名,女運(yùn)動員4名,其中男女隊長各1.選派5人外出比賽,在下列情形中各有多少種選派方法?

1)男運(yùn)動員3名,女運(yùn)動員2名;

2)至少有1名女運(yùn)動員;

3)隊長中至少有1人參加;

4)既要有隊長,又要有女運(yùn)動員.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩點(diǎn)滿足條件:都在函數(shù)的圖象上;②關(guān)于原點(diǎn)對稱.則稱點(diǎn)對是函數(shù)的一對友好點(diǎn)對”(點(diǎn)對看作同一對友好點(diǎn)對”).已知函數(shù)(),若此函數(shù)的友好點(diǎn)對有且只有一對,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某社團(tuán)為調(diào)查大學(xué)生對于“中華詩詞”的喜好,從甲、乙兩所大學(xué)各隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時間,并整理得到如下頻率分布直方圖:

根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時間,可以將學(xué)生對于“中華詩詞”的喜好程度分為三個等級 :

(Ⅰ)從甲大學(xué)中隨機(jī)選出一名學(xué)生試估計其“愛好”中華詩詞的概率;

()從兩組“癡迷”的同學(xué)中隨機(jī)選出2人,記為選出的兩人中甲大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望

()試判斷選出的這兩組學(xué)生每天學(xué)習(xí)“中華詩詞”時間的平均值的大小,及方差的大。(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,底面為矩形,,,過的平面交棱,交棱

(1)證明:平面;

(2)若,求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)約資源和保護(hù)環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).

1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)數(shù).

1)討論的單調(diào)性;

2)若上恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,點(diǎn),角的內(nèi)角平分線所在直線的方程為,邊上的高所在直線的方程為.

1)求點(diǎn)的坐標(biāo);

2)求的內(nèi)切圓圓心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案