2.如圖是4為評委給某作品打出的分數(shù)的莖葉圖,那么4為評委打出的分數(shù)的方差是$\frac{5}{2}$.

分析 利用平均數(shù)與方差的計算公式即可得出.

解答 解:$\overline{x}$=$\frac{88+89+91+92}{4}$=90.
∴方差S2=$\frac{1}{4}[(90-88)^{2}+(90-89)^{2}+(91-90)^{2}+(92-90)^{2}]$=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點評 本題考查了平均數(shù)與方差的計算公式、莖葉圖的應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知等差數(shù)列{an}中,a2=5,前4項和S4=28.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知O為坐標原點,圓M:x2+y2-2x-15=0,定點F(-1,0),點N是圓M上一動點,線段NF的垂直平分線交圓M的半徑MN于點Q,點Q的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)不垂直于x軸且不過F點的直線l與曲線C相交于A,B兩點,若直線FA、FB的斜率之和為0,則動直線l是否一定經過一定點?若過一定點,則求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,已知點A(-1,0),B(1,2),直線l與AB平行.
(1)求直線l的斜率;
(2)已知圓C:x2+y2-4x=0與直線l相交于M,N兩點,且MN=AB,求直線l的方程;
(3)在(2)的圓C上是否存在點P,使得PA2+PB2=12?若存在,求點P的個數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則f(sinα)與f(cosβ)的大小關系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在正四棱錐P-ABCD中,所有的棱長均為2,則側棱與底面ABCD所成的角和該四棱錐的體積分別為( 。
A.45°,$\frac{{4\sqrt{2}}}{3}$B.30°,$\frac{{4\sqrt{2}}}{3}$C.60°,$\frac{{2\sqrt{2}}}{3}$D.75°,$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,已知圓C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=2+sinϕ}\end{array}}\right.$(ϕ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為ρcosθ+2=0.
(1)求C1的極坐標方程與C2的直角坐標方程;
(2)若直線C3的極坐標方程為$θ=\frac{π}{4}({ρ∈R})$,設C3與C1的交點為M,N,P為C2上的一點,且△PMN的面積等于1,求P點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若O為△ABC所在平面內任一點,且滿足$\overrightarrow{BC}•(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})=0$,則△ABC的形狀為( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知命題p:x2-8x-20≤0,命題q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案