【題目】已知二面角α﹣AB﹣β是直二面角,P為棱AB上一點(diǎn),PQ、PR分別在平面α、β內(nèi),且∠QPB=∠RPB=45°,則∠QPR為(
A.45°
B.60°
C.120°
D.150°

【答案】B
【解析】解:以正方體的模型,構(gòu)造滿(mǎn)足條件的幾何圖形如下圖所示

連接QR,由正方體的性質(zhì)可得△PQR為等邊三角形
故∠QPR=60°
故選B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn),以及對(duì)平面與平面垂直的性質(zhì)的理解,了解兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.

(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D﹣BC1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某污水處理廠(chǎng)要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線(xiàn)段BC,AD上.已知AB=20米, 米,記∠BHE=θ.

(1)試將污水凈化管道的長(zhǎng)度L表示為θ的函數(shù),并寫(xiě)出定義域;
(2)若 ,求此時(shí)管道的長(zhǎng)度L;
(3)當(dāng)θ取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線(xiàn)l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(xiàn)的參數(shù)方程為 為參數(shù)),曲線(xiàn)的極坐標(biāo)方程為.

(1)將曲線(xiàn)的極坐標(biāo)方程化為直坐標(biāo)方程,并說(shuō)明曲線(xiàn)的形狀;

(2)若直線(xiàn)經(jīng)過(guò)點(diǎn),求直線(xiàn)被曲線(xiàn)截得的線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為 , 則實(shí)數(shù)a的值為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過(guò)坐標(biāo)原點(diǎn)O作兩條互相垂直的射線(xiàn),與橢圓C交于A(yíng),B兩點(diǎn).設(shè)A(x1 , y1),B(x2 , y2),直線(xiàn)AB的方程為y=﹣2x+m(m>0),試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)點(diǎn)A(2,1)、B(3,2)、D(﹣1,4).
(1)求證: ;
(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線(xiàn)所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一商場(chǎng)在某日促銷(xiāo)活動(dòng)中,對(duì)9時(shí)至14時(shí)的銷(xiāo)售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知9時(shí)至10時(shí)的銷(xiāo)售額為2.5萬(wàn)元,則11時(shí)至12時(shí)的銷(xiāo)售為(
A.100萬(wàn)元
B.10萬(wàn)元
C.7.5萬(wàn)元
D.6.25萬(wàn)元

查看答案和解析>>

同步練習(xí)冊(cè)答案