分析 作出不等式組對應(yīng)的平面區(qū)域,則目標函數(shù)為z=x+y,利用線性規(guī)劃的知識進行求解即可.
解答 解:設(shè)z=x+y,
作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當直線y=-x+z經(jīng)過點A時,
直線y=-x+z的截距最大,
此時z最大.但此時z最大值取不到,
由圖象當直線經(jīng)過整點E(5,5)時,z=x+y取得最大值,
代入目標函數(shù)z=x+y得z=5+5=10.
即目標函數(shù)z=x+y的最大值為10.
故答案為:10.
點評 本題主要考查線性規(guī)劃的應(yīng)用問題,根據(jù)圖象確定最優(yōu)解,要根據(jù)整點問題進行調(diào)整,有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,+∞) | B. | (-2,+∞) | C. | (-∞,-4) | D. | (-∞,-4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $±\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $±\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com