分析 (1)求得C1的標(biāo)準(zhǔn)方程,及曲線C2的標(biāo)準(zhǔn)方程,則圓心C1到x=3距離d,點(diǎn)P到曲線C2的距離的最大值dmax=R+d=6;
(2)將直線l的方程代入C1的方程,求得A和B點(diǎn)坐標(biāo),求得丨AB丨,利用點(diǎn)到直線的距離公式,求得C1到AB的距離d,即可求得△ABC1的面積.
解答 解(1)曲線C1:$\left\{\begin{array}{l}{x=-2+cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).整理得:(x+2)2+(y+1)2=1
曲線C2:ρcosθ-3=0,則x=3.
則圓心C1到x=3距離d,d=2+3=5,
點(diǎn)P到曲線C2的距離的最大值dmax=R+d=6;
∴點(diǎn)P到曲線C2的距離的最大值6;
(2)若曲線C3:θ=$\frac{π}{4}$,即y=x,
$\left\{\begin{array}{l}{y=x}\\{(x+2)^{2}+(y+1)^{2}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=-1}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-2}\end{array}\right.$,
丨AB丨=$\sqrt{(-1+2)^{2}+(-1+2)}$=$\sqrt{2}$
∴C1到AB的距離d=$\frac{|-2+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
則△ABC1的面積S,S=$\frac{1}{2}$×$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=$\frac{1}{2}$.
∴△ABC1的面積$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,直線與的圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com