正方形ABCD邊長為2,EF分別是ABCD的中點,將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點M到直線EF的距離為(    )
A.B.1C.D.
A
過點MMM′⊥EF,則MM′⊥平面BCF
∵∠MBE=∠MBC  BM′為∠EBC為角平分線,
∴∠EBM′=45°,BM′=,從而MN=,故選A。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在棱長為的正方體中,為棱的中點.
(Ⅰ)求證:平面;   (Ⅱ)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等邊ABC的A∈平面α,B、C到面α的距離分別為2a、a,且AB=BC=AC=b.
(1)求面ABC與α所成二面角的大;
(2)若B、C到α的距離分別為3a、a呢?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB∶AD=∶1,F(xiàn)是AB的中點.
 。1)求VC與平面ABCD所成的角;
 。2)求二面角V-FC-B的度數(shù);
 。3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面是正方形的四棱錐,平面⊥平面,===2.
(I)求證:;
(II)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)當你手握直角三角板,其斜邊保持不動,將其直角頂點提起一點,則直角在平面內(nèi)的正投影是銳角、直角 還是鈍角?
(2)根據(jù)第(1)題,你能猜想某個角在一個平面內(nèi)的正投影一定大于這個角嗎?如果正確,請證明;如果錯誤,則利用下列三角形舉出反例:△ABC中,,
,以∠BAC為例。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN
(2)求二面角A—BNC的余弦值.


 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

軸截面是直角三角形的圓錐的底面半徑為r,則其軸截面面積為________.

查看答案和解析>>

同步練習冊答案