【題目】提高過(guò)江大橋的車(chē)輛通行的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)

的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),就會(huì)造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)

車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),

車(chē)流速度是車(chē)流密度的一次函數(shù).

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)如果車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù)) (單位:輛/小時(shí)),那么當(dāng)車(chē)流密度為多大時(shí),車(chē)流量可以達(dá)到最大,并求出最大值.(精確到輛/小時(shí)).

【答案】(1);(2) .

【解析】試題分析:

本題考查函數(shù)模型在實(shí)際中的應(yīng)用以及分段函數(shù)最值的求法。1)根據(jù)題意用分段函數(shù)并結(jié)合待定系數(shù)法求出函數(shù)的關(guān)系式。(2首先由題意得到的解析式,再根據(jù)分段函數(shù)最值的求得求得最值即可。

試題解析

(1)由題意:當(dāng)時(shí), ;

當(dāng)時(shí),設(shè)

由已知得 解得

綜上可得

(2)依題意并由(1)可得

①當(dāng)時(shí), 為增函數(shù),

∴當(dāng)時(shí), 取得最大值,且最大值為1200 。

②當(dāng)時(shí), ,

∴當(dāng)時(shí), 取得最大值,且最大值為。

所以的最大值為

故當(dāng)車(chē)流密度為100輛/千米時(shí),車(chē)流量可以達(dá)到最大,且大值為3333輛/小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)若,求的取值范圍;

3)設(shè)函數(shù),其中.若函數(shù)的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過(guò)智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬(wàn)元,但銀行需付下崗職員每人每年6萬(wàn)元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】濮陽(yáng)市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬(wàn)元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號(hào)x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測(cè)該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足:對(duì)任意恒成立,當(dāng)時(shí),.

1求證上是單調(diào)遞增函數(shù);

2已知,解關(guān)于的不等式;

3,且不等式對(duì)任意恒成立.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角AB、C所對(duì)的邊分別為ab、c,且

1)判斷△ABC的形狀,并加以證明;

2)當(dāng)c = 1時(shí),求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據(jù)表中數(shù)據(jù),通過(guò)計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯(cuò)的概率不超過(guò)(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷(xiāo)售商定購(gòu),決定當(dāng)一次定購(gòu)量超過(guò)100件時(shí),每多定購(gòu)一件,訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次定購(gòu)量不會(huì)超過(guò)500件.

(1)設(shè)一次定購(gòu)量為x件,服裝的實(shí)際出廠總價(jià)為P元,寫(xiě)出函數(shù)P=f(x)的表達(dá)式;

(2)當(dāng)銷(xiāo)售商一次定購(gòu)了450件服裝時(shí),該服裝廠獲得的利潤(rùn)是多少元?

(服裝廠售出一件服裝的利潤(rùn)=實(shí)際出廠價(jià)格-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案