【題目】正方體的棱長為2E,F,G分別為,,的中點,則(

A.直線與直線垂直

B.直線與平面不平行

C.平面截正方體所得的截面面積為

D.C與點G到平面的距離相等

【答案】C

【解析】

根據(jù)條件對選項進行逐一分析, A.若有,則能得到平面,進一步得到,顯然不成立,可判斷. B.的中點Q,連接,,可得平面平面,從而可判斷. C.連接,延長,交于點S,由條件可得,截面即為梯形,再計算其面積. D.用等體積法分別求出點C和點G到平面的距離,從而判斷.

A.,

又因為,所以平面,

所以,所以,顯然不成立,故結論錯誤;

B.如圖所示,取的中點Q,連接

由條件可知:,,且,,

所以平面平面,

又因為平面,所以平面,故結論不正確;

C.如圖所示,連接,延長,交于點S,

因為EF,的中點,所以,所以A,E,F四點共面,

所以,截面即為梯形

又因為,,

所以,所以,故結論正確;

D.記點C與點G到平面的距離分別為,

因為.

又因為,

所以,故結論錯誤.

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,取得極值,求的值并判斷是極大值點還是極小值點;

當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜批發(fā)商經銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內所購進的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價格低價處理完畢(根據(jù)經驗,2小時內完全能夠把蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100蔬菜在每天的前8小時內的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購入6蔬菜,有4蔬菜在前8小時內分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?

2)以上述樣本數(shù)據(jù)作為決策的依據(jù).

i)若今年蔬菜上市的100天內,該蔬菜批發(fā)商堅持每天購進6蔬菜,試估計該蔬菜批發(fā)商經銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購進蔬菜的袋數(shù)相同,試幫其設計明年的蔬菜的進貨方案,使其所獲取的平均利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績如莖葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學成績的中位數(shù),并將同學乙的成績的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學數(shù)學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可);

(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,,點的中點.將沿折起,使點到達的位置,得到如圖所示的四棱錐,點為棱的中點.

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體的棱長為2,平面.平面截此正方體所得的截面有以下四個結論:

①截面形狀可能是正三角形②截面的形狀可能是正方形

③截面形狀可能是正五邊形④截面面積最大值為

則正確結論的編號是(

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了121日至124日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

121

122

123

124

溫差

11

13

12

8

發(fā)芽數(shù)(顆)

26

32

26

17

根據(jù)表中121日至123日的數(shù)據(jù),求得線性回歸方程中的,則求得的_____;若用124日的數(shù)據(jù)進行檢驗,檢驗方法如下:先用求得的線性回歸方程計算發(fā)芽數(shù),再求與實際發(fā)芽數(shù)的差,若差值的絕對值不超過2顆,則認為得到的線性回歸方程是可靠的,則求得的線性回歸方程_____(填可靠不可靠).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù)),直線經過點且傾斜角為.

1)求曲線的極坐標方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓經過橢圓的左右焦點,與橢圓在第一象限的交點為,且, , 三點共線.

(1)求橢圓的方程;

(2)設與直線為原點)平行的直線交橢圓兩點,當的面積取取最大值時,求直線的方程.

查看答案和解析>>

同步練習冊答案