【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內(nèi)所購進的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100天蔬菜在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.
(1)若某天該蔬菜批發(fā)商共購入6袋蔬菜,有4袋蔬菜在前8小時內(nèi)分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù).
(i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅持每天購進6袋蔬菜,試估計該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;
(ii)若明年該蔬菜批發(fā)商每天購進蔬菜的袋數(shù)相同,試幫其設計明年的蔬菜的進貨方案,使其所獲取的平均利潤最大.
【答案】(1);(2)(i)元;(ii)該批發(fā)商明年每天購進蔬菜5袋,所獲平均利潤最大.
【解析】
(1)通過列舉分別求出“從6人中任選2人”和“至少選中1人是以150元/袋的價格購買”的基本事件個數(shù),通過古典概型公式計算即可;
(2)(i)通過頻數(shù)分布條形圖進行估算即可;(ii)分別計算購進蔬菜4袋、5袋、6袋時的每天所獲平均利潤,比較大小即可.
(1)設這6人中花150元/袋的價格購買蔬菜的顧客為,
其余4人為,,,.
則從6人中任選2人的基本事件為:,,,,,,,,,,,,,,,共15個.
其中至少選中1人是以150元/袋的價格購買的基本事件有:,,,,,,,,,共9個.
至少選中1人是以150元/袋的價格購買的概率為.
(2)(i)該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值為:(元).
(ii)當購進蔬菜4袋時,每天所獲平均利潤為(元),
當購進蔬菜5袋時,每天所獲平均利潤為(元)
當購進蔬菜6袋時,每天所獲平均利潤為(元)
綜上,該批發(fā)商明年每天購進蔬菜5袋,所獲平均利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.
(1)求拋物線的方程;
(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )
A.23B.21C.35D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ2(cos2θ+3sin2θ)=12,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C交于M,N兩點.
(1)若點P的極坐標為(2,π),求|PM||PN|的值;
(2)求曲線C的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,且,滿足條件的點的軌跡為曲線.
(1)求曲線的方程;
(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱“孔方兄”)是我國使用時間長達兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個字“同治重寶”.某模具廠計劃仿制這樣的銅錢作為紀念品,其小圓內(nèi)部圖紙設計如圖2所示,小圓直徑1厘米,內(nèi)嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長。總正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內(nèi)用于刻銅錢上的字.設,五個正方形的面積和為.
(1)求面積關(guān)于的函數(shù)表達式,并求的范圍;
(2)求面積最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體的棱長為2,E,F,G分別為,,的中點,則( )
A.直線與直線垂直
B.直線與平面不平行
C.平面截正方體所得的截面面積為
D.點C與點G到平面的距離相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設,若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com