19.如圖(1),五邊形PABCD是由一個(gè)正方形與一個(gè)等腰三角形拼接而成,其中∠APD=120°,AB=2,現(xiàn)將△PAD進(jìn)行翻折,使得平面PAD⊥平面ABCD,連接PB,PC,所得四棱錐P-ABCD如圖(2)所示,則四棱錐P-ABCD的外接球的表面積為( 。
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

分析 將四棱錐P-ABCD補(bǔ)成直三棱柱PAD-MBC,則直三棱柱PAD-MBC與四棱錐P-ABCD的外接球是同一個(gè)球,故只需求出直三棱柱PAD-MBC的外接球半徑即可.

解答 解:將四棱錐P-ABCD補(bǔ)成直三棱柱PAD-MBC,
則直三棱柱PAD-MBC與四棱錐P-ABCD的外接球是同一個(gè)球,
故只需求出直三棱柱PAD-MBC的外接球半徑即可.
如圖,設(shè)直三棱柱PAD-MBC的兩底的外接圓圓心分別為O1,O2,連接O1O2
根據(jù)對(duì)稱性球心為線段O1O2的中點(diǎn)O,
又∵底ADP的外接圓半徑r,由正弦定理得$\frac{AD}{sin12{0}^{0}}=2r$,⇒r=$\frac{2}{\sqrt{3}}$,
直三棱柱PAD-MBC的外接球半徑R=$\sqrt{{r}^{2}+O{{O}_{1}}^{2}}=\sqrt{\frac{7}{3}}$.
∴四棱錐P-ABCD的外接球的表面積為s=4πR2=$\frac{28}{3}π$.
故選:C.

點(diǎn)評(píng) 本題考查了多面體的外接球,把不易求其外接球半徑的幾何體轉(zhuǎn)化為易求半徑幾何體,是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline z$,已知$(1+2i)\overline z=4+3i$,求z及$\frac{z}{\overline z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=sinx-$\frac{2}{5π}$x零點(diǎn)的個(gè)數(shù)是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來(lái)找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句,據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是( 。
A.曹雪芹、莎士比亞、雨果B.雨果、莎士比亞、曹雪芹
C.莎士比亞、雨果、曹雪芹D.曹雪芹、雨果、莎士比亞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書、數(shù),簡(jiǎn)稱“六藝”.某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽.現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐.規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為a,b,c(a>b>c,且a,b,c∈N*);選手最后得分為各場(chǎng)得分之和.在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列說(shuō)法正確的是(  )
A.每場(chǎng)比賽第一名得分a為4B.甲可能有一場(chǎng)比賽獲得第二名
C.乙有四場(chǎng)比賽獲得第三名D.丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.經(jīng)過(guò)點(diǎn)(1,1)和(-2,4)的直線的一般式方程是x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,$∠A=\frac{2π}{3}$,$a=\sqrt{3}c$,則$\frac{a}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是?x∈R,x2+2ax+a>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案