9.已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是?x∈R,x2+2ax+a>0.

分析 利用含邏輯連接詞的否定是將存在變?yōu)槿我,同時(shí)將結(jié)論否定,寫出命題的否定.

解答 解:命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是:?x∈R,x2+2ax+a>0,
故答案為:?x∈R,x2+2ax+a>0.

點(diǎn)評(píng) 本題考查命題的否定,命題的否定即命題的對(duì)立面.“全稱量詞”與“存在量詞”正好構(gòu)成了意義相反的表述.如“對(duì)所有的…都成立”與“至少有一個(gè)…不成立”;“都是”與“不都是”等,所以“全稱命題”的否定一定是“存在性命題”,“存在性命題”的否定一定是“全稱命題”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖(1),五邊形PABCD是由一個(gè)正方形與一個(gè)等腰三角形拼接而成,其中∠APD=120°,AB=2,現(xiàn)將△PAD進(jìn)行翻折,使得平面PAD⊥平面ABCD,連接PB,PC,所得四棱錐P-ABCD如圖(2)所示,則四棱錐P-ABCD的外接球的表面積為(  )
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=(2x2+3)(3x-1)
(2)f(x)=3x•(lnx-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.把曲線的極坐標(biāo)方程ρ=8sinθ化為直角坐標(biāo)方程式( 。
A.x2+y2=4B.x2+(y-4)2=16C.x2+y2=1D.y=2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列說法中,所有正確說法的序號(hào)是②④.
①終邊落在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函數(shù)y=2cos(x-$\frac{π}{4}$)圖象的一個(gè)對(duì)稱中心是($\frac{3π}{4}$,0);
③函數(shù)y=tanx在第一象限是增函數(shù);
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域?yàn)?\{y|-3≤y≤\sqrt{3}-1\}$,則a=b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)如果關(guān)于x的不等式|x+3|+|x-2|<a的解集不是空集,求參數(shù)a的取值范圍;
(Ⅱ)已知正實(shí)數(shù)a,b,且h=min{a,$\frac{{a}^{2}+^{2}}$},求證:0<h≤$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值為4,則$\frac{1}{a}+\frac{2}{3b}$的最小值為4..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在邊長(zhǎng)為2的正方形ABCD中,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,點(diǎn)F在線段AB上運(yùn)動(dòng),則$\overrightarrow{FD}•\overrightarrow{FE}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求經(jīng)過點(diǎn)$C({6,\frac{π}{6}})$,且平行于極軸的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案