已知sinα<0,tanα>0,則角
α
2
的終邊在( 。
分析:由sinα<0,tanα>0可得,2kπ+π<α<2kπ+
2
,k∈Z
kπ+
π
2
α
2
<kπ+
4
,分k=2n,k=2n+1,
兩種情況討論即可
解答:解:∵sinα<0,tanα>0
2kπ+π<α<2kπ+
2
,k∈Z

kπ+
π
2
α
2
<kπ+
4

k=2n時,2nπ+
π
2
<α<2nπ+
4
,n∈Z
,在第二象限
k=2n+1,2nπ+
2
<α<2nπ+
4
,n∈Z
,在第四象限
故選:B
點(diǎn)評:本題主要考查了由三角函數(shù)值判斷角所在的象限,及由α的終邊所在的象限判斷
α
2
的終邊所在的象限,體現(xiàn)了分類討論的思想在解題中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα,cosα是方程25x2-5(2t+1)x+t2+t=0的兩根且α為銳角,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα,cosα是方程25x2-5(2t+1)x+t2+t=0的兩根,且α為銳角.
(1)求t的值;
(2)求以
1
sinα
 , 
1
cosα
為兩根的一元二次方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
sin
π
2
x,x∈[-1,0)
ax2+ax+1,x∈[0,+∞)
,若f(t-
1
3
)>-
1
2
,則實(shí)數(shù)t的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們可以證明:已知sinθ=t(|t|≤1),則sin
θ
2
至多有4個不同的值.
(1)當(dāng)t=
3
2
時,寫出sin
θ
2
的所有可能值;
(2)設(shè)實(shí)數(shù)t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
確定,若sin
θ
2
總共有7個不同的值,求常數(shù)a、b的取值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在平面直角坐標(biāo)系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

同步練習(xí)冊答案