【題目】某市垃圾處理站每月的垃圾處理成本(元)與月垃圾處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,求該站每月垃圾處理量為多少噸時,才能使每噸垃圾的平均處理成本最低?最低平均處理成本是多少?

【答案】該站垃圾處理量為400噸時,才能使每噸垃圾的平均處理成本最低,最低成本為200元

【解析】試題分析:由總成本除以月垃圾處理量可得,每噸垃圾的平均處理成本為,利用基本不等式求最值可得最低平均處理成本,根據(jù)等號成立的條件可得該站每月垃圾處理400噸時,才能使每噸垃圾的平均處理成本最低.

試題解析:由題意可知,每噸垃圾的平均處理成本為

當且僅當,即時等號成立,

故該站垃圾處理量為400噸時,才能使每噸垃圾的平均處理成本最低,最低成本為200元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠對一批產(chǎn)品進行了抽樣檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106].已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是(  )

A. 90 B. 75

C. 60 D. 45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若,求曲線處的切線方程;

(II)討論函數(shù)上的單調(diào)性;

(III)若存在,使得成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)是定義域為R的奇函數(shù), .

(Ⅰ)若,求m的取值范圍;

(Ⅱ)若上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)有一個正方形網(wǎng)格,其中每個最小正方形的邊長都為5 cm.現(xiàn)用直徑為2 cm的硬幣投擲到此網(wǎng)格上,求硬幣落下后與格線有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將集合M={1,2,3,...,15}表示為它的5個三元子集(三元集:含三個元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個三元集的元素之和為________;請寫出滿足上述條件的集合M的5個三元子集__________(只寫出一組)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為。

1)求、的值;

2)如果當,且時, ,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 平面, 為線段上一點, 的中點.

(1)證明:

(2)求四面體的體積.

查看答案和解析>>

同步練習冊答案