8.雙曲線(xiàn) $\frac{x^2}{36}$-$\frac{y^2}{64}$=1的右焦點(diǎn)坐標(biāo)為(10,0).

分析 根據(jù)雙曲線(xiàn)的方程求出a,b,c即可.

解答 解:由雙曲線(xiàn)的方程得a2=36,b2=64,c2=a2+b2=36+64=100,
則c=10,
則雙曲線(xiàn)的右焦點(diǎn)為(10,0),
故答案為:(10,0)

點(diǎn)評(píng) 本題主要考查雙曲線(xiàn)焦點(diǎn)的求解,根據(jù)雙曲線(xiàn)的標(biāo)準(zhǔn)方程求出a,b,c是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)定點(diǎn)A(3,1),B是x軸上的動(dòng)點(diǎn),C是直線(xiàn)y=x上的動(dòng)點(diǎn),則△ABC周長(zhǎng)的最小值是(  )
A.3$\sqrt{5}$B.$\sqrt{6}$C.2$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x,若方程|f(x)|2+t|f(x)|+1=0有12個(gè)不同的根,則實(shí)數(shù)t的取值范圍為( 。
A.(-$\frac{10}{3}$,-2)B.(-∞,-2)C.-$\frac{34}{15}$<t<-2D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,PA=BC=AC,E為PC的中點(diǎn),點(diǎn)F在PB上,且PF=$\frac{1}{3}$PB.
(1)求證:平面AEF⊥平面PBC;
(2)求直線(xiàn)AB和平面AEF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn=2an-2.
(1)求a1,a2,a3并由此猜想an的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知x≥2,當(dāng)且僅當(dāng)x=2時(shí),x+$\frac{4}{x}$取得最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.正實(shí)數(shù)x,y滿(mǎn)足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=x3-x2f'(1)+1,f'(x)為f(x)的導(dǎo)函數(shù),則f(1)=( 。
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的首項(xiàng)a1=3,且滿(mǎn)足an+1=3an+2×3n+1,(n∈N*).
(1)設(shè)bn=$\frac{{a}_{n}}{{3}^{n}}$,判斷數(shù)列{bn}是否為等差數(shù)列或等比數(shù)列,并證明你的結(jié)論;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案