已知函數(shù)f(x)=(
1
2x-1
+
1
2
)x3,
(1)求函數(shù)的定義域;
(2)討論f(x)的奇偶性;
(3)求證:對定義域內(nèi)的所有x,f(x)>0.
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域;
(2)根據(jù)函數(shù)奇偶性的定義即可判斷f(x)的奇偶性;
(3)根據(jù)函數(shù)的奇偶性結(jié)合函數(shù)的定義域即可證明對定義域內(nèi)的所有x,f(x)>0.
解答: 解:(1)要使函數(shù)f(x)有意義,則2x-1≠0,即x≠0,則函數(shù)f(x)的定義域為{x|x≠0}.
(2)∵f(x)=(
1
2x-1
+
1
2
)x3=
2x+1
2(2x-1)
x3
∴f(-x)=
2-x+1
2(2-x-1)
•(-x)3
=
2x+1
2(2x-1)
•x3=f(x),
則函數(shù)f(x)是偶函數(shù).
(3)∵函數(shù)f(x)是偶函數(shù),
∴只要證明當x>0時,f(x)>0,即可.
當x>0,2x-1>0,此時(
1
2x-1
+
1
2
)x3>0,即f(x)>0成立,
綜上對定義域內(nèi)的所有x,f(x)>0.
點評:本題主要考查函數(shù)定義域,奇偶性以及函數(shù)值的求解和證明,綜合考查函數(shù)的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“a>b且c>d”是“a+c>b+d”成立的(  )條件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙O的半徑為r,圓心O到直線l的距離為d,則“d=r”是“直線l與⊙O相切”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、64+
32
3
B、64-
32
3
C、96
D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是二次函數(shù),且f(2-x)-f(x)=0,f(1)=-1,f(0)=0,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(其中ω>0)
(1)求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)的最小正周期為π,試確定ω的值,并求函數(shù)y=f(x),x∈R的單調(diào)增區(qū)間;
(3)在(2)的條件下,若不等式|f(x)-m|<2在x∈[
π
4
π
2
]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設在一個盒子中,放有標號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片,標號分別記為x,y,設隨機變量ξ=|x-2|+|y-x|.
(1)寫出x,y的可能取值,并求隨機變量ξ的最大值;
(2)求事件“ξ取得最大值”的概率;
(3)求ξ的分布列和數(shù)學期望與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)解不等式:x+|2x-1|<3
(2)求函數(shù)y=xlnx的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2+k
x2+4
,其中k為實數(shù),求函數(shù)y的最小值.

查看答案和解析>>

同步練習冊答案