6.已知角α終邊經(jīng)過點(diǎn)P(a,1+3a),且cosα=-$\frac{2}{5}\sqrt{5}$,則a=-$\frac{2}{5}$ 或-$\frac{2}{7}$.

分析 由條件利用任意角的三角函數(shù)的定義,求得a的值.

解答 解:∵角α終邊經(jīng)過點(diǎn)P(a,1+3a),且cosα=-$\frac{2}{5}\sqrt{5}$=$\frac{a}{\sqrt{{a}^{2}{+(1+3a)}^{2}}}$,即$\left\{\begin{array}{l}{a<0}\\{\frac{20}{25}=\frac{{a}^{2}}{1{0a}^{2}+6a+1}}\end{array}\right.$,
求得a=-$\frac{2}{5}$,或 a=-$\frac{2}{7}$,
故答案為:-$\frac{2}{5}$ 或-$\frac{2}{7}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知{an}為等差數(shù)列,且a3+a4=3(a1+a2),a2n-1=2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=m-$\frac{{{a_n}+1}}{2^n}$(m為常數(shù)).令cn=b2n (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)的定義域?yàn)閇-1,2],求函數(shù)y=f(|x|)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓:x2+y2-4x-4y+7=0的圓心為C,從圓外一點(diǎn)P(a,b)向圓作切線PT,T為切點(diǎn),且滿足|PT|=|PO|(0為坐標(biāo)原點(diǎn)).
(1)求|PT|的最小值以及相應(yīng)點(diǎn)P的坐標(biāo);
(2)求△PCT周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.直線2x+2y-1=0和直線mx-y+1=0的夾角為$\frac{π}{4}$,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.直線$\left\{\begin{array}{l}x={x_0}+at\\ y={y_0}+bt\end{array}\right.$(t為參數(shù))上的兩個(gè)點(diǎn)A,B對(duì)應(yīng)參數(shù)分別為t1,t2,則|AB|=(  )
A.|t1-t2|B.$\sqrt{{a^2}+{b^2}}|{{t_1}-{t_2}}|$C.$\frac{{|{{t_1}-{t_2}}|}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{{|{{t_1}-{t_2}}|}}{{{a^2}+{b^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\overrightarrow{a}$=(-$\sqrt{3}$,$\frac{5}{3}$),$\overrightarrow$=($\sqrt{3}$,-$\frac{1}{3}$).
(1)求$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角是多少;
(2)求$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-λ$\overrightarrow$的夾角為鈍角,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三棱錐P-ABC中,$AB=AC=\sqrt{2}$,AP=BC=2,$BP=\sqrt{6}$,BC⊥AP,則此三棱錐的外接球的體積為(  )
A.$\frac{{4\sqrt{2}π}}{3}$B.$\frac{{8\sqrt{2}π}}{3}$C.$\frac{{16\sqrt{2}π}}{3}$D.$\frac{{32\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x,x≤0}\\{lnx,x>0}\end{array}\right.$,其中e為自然對(duì)數(shù)的底數(shù),則f[f($\frac{1}{2}$)]=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案