分析 (1)由題意可得b=$\sqrt{2}$,運(yùn)用離心率公式和a,b,c的關(guān)系,可得a,進(jìn)而得到橢圓方程;
(2)設(shè)A(x1,y1),B(x2,y2).(。┊(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=k(x-1),代入橢圓方程,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,解方程可得k;(ⅱ)當(dāng)l垂直于x軸時(shí),由向量的加法運(yùn)算,即可判斷.
解答 解:(1)由2b=2$\sqrt{2}$.得b=$\sqrt{2}$,
即有$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,a2-c2=2,
所以$a=\sqrt{3},c=1$,
則橢圓方程為$\frac{x^2}{3}+\frac{y^2}{2}=1$;
(2)橢圓C的方程為2x2+3y2=6.設(shè)A(x1,y1),B(x2,y2).
(ⅰ)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=k(x-1).
C上的點(diǎn)P使$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立的充要條件是P點(diǎn)坐標(biāo)為(x1+x2,y1+y2),
且2(x1+x2)2+3(y1+y2)2=6,
整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6,
又A、B在橢圓C上,即2x12+3y12=6,2x22+3y22=6,
故2x1x2+3y1y2+3=0.①
將y=k(x-1)代入2x2+3y2=6,并化簡得
(2+3k2)x2-6k2x+3k2-6=0,
于是x1+x2=$\frac{6{k}^{2}}{2+3{k}^{2}}$,x1•x2=$\frac{3{k}^{2}-6}{2+3{k}^{2}}$,
y1•y2=k2(x1-1)(x2-1)=$\frac{-4{k}^{2}}{2+3{k}^{2}}$.
代入①解得k2=2,
因此,當(dāng)k=-$\sqrt{2}$時(shí),l的方程為$\sqrt{2}$x+y-$\sqrt{2}$=0;
當(dāng)k=$\sqrt{2}$時(shí),l的方程為$\sqrt{2}$x-y-$\sqrt{2}$=0.
(ⅱ)當(dāng)l垂直于x軸時(shí),由$\overrightarrow{OA}$+$\overrightarrow{OB}$=(2,0)知,
C上不存在點(diǎn)P使$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立.
綜上,l的方程為$\sqrt{2}$x±y-$\sqrt{2}$=0.
點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式,考查直線方程的求法,注意運(yùn)用分類討論的思想方法和直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $0<e<\frac{1}{2}$ | B. | $0<e<\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}<e<1$ | D. | $\frac{{\sqrt{3}}}{3}<e<1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com