分析 根據(jù)平面向量的線性表示與數(shù)量積的定義,計(jì)算即可.
解答 解:邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,
∴$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$,
又E為BC中點(diǎn),
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$,
∴$\overrightarrow{AE}•\overrightarrow{BD}$=($\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$${\overrightarrow{AD}}^{2}$+$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-${\overrightarrow{AB}}^{2}$
=$\frac{1}{2}$×22+$\frac{1}{2}$×2×2×cos60°-22
=-1.
故答案為:-1.
點(diǎn)評(píng) 本題考查了平面向量的線性表示與數(shù)量積運(yùn)算問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧(?q) | B. | (?p)∧(?q) | C. | (?p)∧q | D. | p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a^2}{2}$ | B. | $\frac{{\sqrt{6}}}{4}{a^2}$ | C. | $\frac{{\sqrt{3}}}{4}{a^2}$ | D. | $\frac{{\sqrt{3}}}{2}{a^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
類別 | 達(dá)到精品級(jí) | 未達(dá)到精品級(jí) | 總計(jì) |
高級(jí)技工 | 22 | 6 | 28 |
中級(jí)技工 | 10 | 10 | 20 |
總計(jì) | 32 | 16 | 48 |
$\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$ | $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$ | $\sum_{i=1}^{6}{n}_{i}$ 2 | $\sum_{i=1}^{6}{t}_{i}$ 2 | $\sum_{i=1}^{6}{n}_{i}{t}_{i}$ | $\sum_{i=1}^{6}$(ni-$\overline{n}$)2 | $\sum_{i=1}^{6}$(ti-$\overline{t}$)2 | $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) |
4.5 | 4.125 | 139 | 109.562 | 112.75 | 17.5 | 7.468 | 11.375 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com