已知函數(shù)f(x)=ax2-2x,g(x)=-,(a,b∈R)
(Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì)(a,b):當(dāng)a是整數(shù)時(shí),存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值.
【答案】分析:(Ⅰ)當(dāng)b=0時(shí),f(x)=ax2-4x,討論a的取值,結(jié)合二次函數(shù)的單調(diào)性建立a的不等關(guān)系即可;
(Ⅱ)討論a為0時(shí)不可能,要使f(x)有最大值,必須滿足,求出此時(shí)的x=x,根據(jù)g(x)取最小值時(shí),x=x=a,建立等量關(guān)系,結(jié)合a是整數(shù),求出a和b的值.
解答:解:(Ⅰ)當(dāng)b=0時(shí),f(x)=ax2-4x,
若a=0,f(x)=-4x,則f(x)在[2,+∞)上單調(diào)遞減,不符題意,
故a≠0,要使f(x)在[2,+∞)上單調(diào)遞增,必須滿足,
∴a≥1.
(Ⅱ)若a=0,,則f(x)無(wú)最大值,故a≠0,
∴f(x)為二次函數(shù),
要使f(x)有最大值,必須滿足,即a<0且,
此時(shí),時(shí),f(x)有最大值.
又g(x)取最小值時(shí),x=x=a,
依題意,有
,
∵a<0且
,得a=-1,此時(shí)b=-1或b=3.
∴滿足條件的實(shí)數(shù)對(duì)(a,b)是(-1,-1),(-1,3).
點(diǎn)評(píng):本題主要考查了函數(shù)單調(diào)性的應(yīng)用,以及函數(shù)的最值及其幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案