9.(x+2y-$\frac{1}{z}$)6展開(kāi)式中$\frac{x{y}^{2}}{{z}^{3}}$的系數(shù)為-240.

分析 (x+2y-$\frac{1}{z}$)6展表示6個(gè)因式(x+2y-$\frac{1}{z}$)的乘積,故其中1個(gè)因式取x,2個(gè)因式取2y,剩下的3個(gè)因式取-$\frac{1}{z}$,可得展開(kāi)式中含$\frac{x{y}^{2}}{{z}^{3}}$的項(xiàng),根據(jù)乘法原理求得展開(kāi)式中$\frac{x{y}^{2}}{{z}^{3}}$的系數(shù).

解答 解:∵(x+2y-$\frac{1}{z}$)6展表示6個(gè)因式(x+2y-$\frac{1}{z}$)的乘積,
故其中1個(gè)因式取x,2個(gè)因式取2y,剩下的3個(gè)因式取-$\frac{1}{z}$,
可得展開(kāi)式中含$\frac{x{y}^{2}}{{z}^{3}}$的項(xiàng),
故展開(kāi)式中$\frac{x{y}^{2}}{{z}^{3}}$的系數(shù)為${C}_{6}^{1}$•${C}_{5}^{2}$•22•(-1)=-240,
故答案為:-240.

點(diǎn)評(píng) 本題主要考查乘方的意義,乘法原理的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)在x軸上,焦距為4,并且經(jīng)過(guò)點(diǎn)P(3,$-2\sqrt{6}$)
(2)焦距為8,離心率為0.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.經(jīng)過(guò)點(diǎn)M(2$\sqrt{6}$,-2$\sqrt{6}$)且與雙曲線$\frac{y^2}{3}$-$\frac{x^2}{4}$=1有共同漸近線的雙曲線方程為( 。
A.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1B.$\frac{{y}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義符號(hào)函數(shù)為sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則下列命題:
①|(zhì)x|=x•sgn(x);
②關(guān)于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5個(gè)實(shí)數(shù)根;
③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),則a+b的取值范圍是(2,+∞);
④設(shè)f(x)=(x2-1)•sgn(x2-1),若函數(shù)g(x)=f2(x)+af(x)+1有6個(gè)零點(diǎn),則a<-2.
正確的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解關(guān)于x的不等式:x2-(a2+a)x+a3≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i是虛數(shù)單位,復(fù)數(shù)$z=i+\frac{2}{1-i}$,則復(fù)數(shù)$\overline z$的虛部是( 。
A.$-\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=a-2ty}\\{y=-4t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.關(guān)于實(shí)數(shù)x,y的不等式組$\left\{\begin{array}{l}x≤4\\ y≥2\\ x-y+2≥0\end{array}\right.$所表示的平面區(qū)域記為M,不等式(x-4)2+(y-3)2≤1所表示的區(qū)域記為N,若在M內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自N的概率為( 。
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,EA⊥平面ABC,DB⊥平面ABC,△ABC是等邊三角形,AC=2AE,M是AB的中點(diǎn).
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若直線DM與平面ABC所成角的正切值為2,求二面角B-CD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案