14.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{6}$)
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)O為極點(diǎn),A,B為圓C上的兩點(diǎn),且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

分析 (I)圓C的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{6}$),展開可得:ρ2=4ρ$(\frac{\sqrt{3}}{2}sinθ-\frac{1}{2}cosθ)$,利用互化公式即可得出直角坐標(biāo)方程.
(II)不妨設(shè)A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{3})$.代入ρ12=4sin(θ-$\frac{π}{6}$)+4sin(θ+$\frac{π}{6}$)化簡整理即可得出.

解答 解:(I)圓C的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{6}$),展開可得:
ρ2=4ρ$(\frac{\sqrt{3}}{2}sinθ-\frac{1}{2}cosθ)$,
可得直角坐標(biāo)方程:x2+y2=2$\sqrt{3}$y-2x.
配方為(x+1)2+$(y-\sqrt{3})^{2}$=4.
(II)不妨設(shè)A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{3})$.
∴ρ12=4sin(θ-$\frac{π}{6}$)+4sin(θ+$\frac{π}{6}$)=8$sinθcos\frac{π}{6}$=4$\sqrt{3}$sinθ≤4$\sqrt{3}$,
當(dāng)且僅當(dāng)sinθ=1時取得最大值4$\sqrt{3}$.

點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、和差公式、三角函數(shù)的單調(diào)性與最值,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式|2x-1|(x+1)>0的解集為{x|x>-1且x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知AB⊥平面BCE,CD∥AB,△BCE是等邊三角形,AB=BC=2CD,F(xiàn)為線段BE的中點(diǎn).
(1)求證:CF∥平面ADE;
(2)求證:平面ADE⊥平面ABE;
(3)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,E為線段B1C的中點(diǎn),若三棱錐E-ADD1的外接球的體積為36π,則正方體的棱長為( 。
A.2B.2$\sqrt{2}$C.3$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4x-$\frac{2}{1+c}$x2,g(x)=$\frac{4c}{1+c}$lnx.
(1)若直線l與函數(shù)f(x),g(x)的圖象均相切,且與g(x)圖象切點(diǎn)的橫坐標(biāo)為e(e是自然對數(shù)的底數(shù)),求c的值.
(2)若c<1,試討論函數(shù)f(x)-g(x)的單調(diào)性.
(3)若c>1,記f(x)-g(x)的極大值為M(c),極小值為N(c),討論函數(shù)h(c)=M(c)-N(c)-$\frac{a}{c+1}$(a為實(shí)數(shù))的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC中,點(diǎn)A(3,$\frac{π}{4}$),B(4,$\frac{5π}{4}$),則點(diǎn)C的極坐標(biāo)可以是( 。
A.(0,0)B.(π,-π)C.(2,$\frac{π}{4}$)D.(π,-$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,A,B,C,D四點(diǎn)在同一圓上,BC與AD的延長線交于點(diǎn)E,點(diǎn)F在BA的延長線上.
(1)若$\frac{EC}{CB}$=$\frac{1}{3}$,$\frac{ED}{DA}$=1,求$\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,證明:EF∥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.極坐標(biāo)ρ2cosθ-ρ=0表示的圖形是原點(diǎn)和直線x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lg$\frac{x-a}{x+1}$(a∈R).
(1)若f(x)是定義域上奇函數(shù),求a的值;
(2)若函數(shù)在[1,+∞)上單增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案