【題目】一艘輪船在航行中燃料費和它的速度的立方成正比.已知速度為每小時10千米時,燃料費是每小時6,而其他與速度無關的費用是每小時96,問輪船的速度是多少時,航行1千米所需的費用總和最少?

【答案】當速度為20千米/小時時,航行1千米所需費用總和最少

【解析】

試題設速度為每小時v千米時,由題可得行駛1千米的總費用為q=(0.006v3+96)=0.006v2+. 再用導數(shù)作為工具求解該最值問題即可.

試題解析:設速度為每小時v千米時,燃料費是每小時p元,那么由題設知p=kv3,因為v=10,p=6,所以k==0.006.于是有p=0.006v3.

又設船的速度為每小時v千米時,行駛1千米所需的總費用為q元,那么每小時所需的總費用是(0.006v3+96)元,而行駛1千米所用時間為小時,所以行駛1千米的總費用為

q=(0.006v3+96)=0.006v2+.

q′=0.012v-=(v3-8000),

令q′=0,解得v=20.

當v<20時,q′<0;當v>20時,q′>0,

所以當v=20時,q取得最小值.

即當速度為20千米/小時時,航行1千米所需費用總和最少.

點晴:本題考查函數(shù)模型的應用,考查建立函數(shù)模型解決實際問題的思想和方法.建立起函數(shù)模型之后選擇導數(shù)作為工具求解該最值問題. 根據(jù)題意建立相應的函數(shù)模型是解決本題的關鍵.建立起函數(shù)的模型之后,根據(jù)函數(shù)的類型選擇合適的方法求解相應的最值問題,充分發(fā)揮導數(shù)的工具作用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某公司生產某款手機的年固定成本為40萬元,每生產1萬只還需另投入16萬元.設該公司一年內共生產該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關于年產量(萬只)的函數(shù)解析式;

(2)當年產量為多少萬只時,該公司在該款手機的生產中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知)是R上的奇函數(shù),且.

1)求的解析式;

2)若關于x的方程在區(qū)間內只有一個解,求m的取值集合;

3)設,記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,求函數(shù)的最大值;

2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

3)當,,方程有唯一實數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標號分別為,3個紅球標號分別為,,現(xiàn)從箱子中隨機地一次取出兩個球.

(1)求取出的兩個球都是白球的概率;

(2)求取出的兩個球至少有一個是白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線相交于點,求:的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若在定義域內存在,使得成立,則稱為函數(shù)的局部對稱點.

1)若,證明:函數(shù)必有局部對稱點;

2)若函數(shù)在定義域內有局部對稱點,求實數(shù)的取值范圍;

3)若函數(shù)上有局部對稱點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研.人社部從網上年齡在15~65歲的人群中隨機調查100人,調查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如表:

年齡(歲)

支持“延遲退休年齡政策”人數(shù)

15

5

15

28

17

(I)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

年齡低于45歲的人數(shù)

年齡不低于45歲的人數(shù)

總計

支持

不支持

總計

(II)通過計算判斷是否有的把握認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度有差異.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中有個白球和個紅球(,且),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.

(1)試用含的代數(shù)式表示一次摸球中獎的概率

(2)若,求三次摸球恰有一次中獎的概率;

(3)記三次摸球恰有一次中獎的概率為,當為何值時,取最大.

查看答案和解析>>

同步練習冊答案