【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).

(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.

(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?

【答案】(1);(2)分布列見(jiàn)解析, .

【解析】試題分析:(1)方案乙中所需化驗(yàn)次數(shù)恰好為2次的事件有兩種情況:第一種,先化驗(yàn)一組,結(jié)果不含病毒DNA,再?gòu)牧硪唤M任取一個(gè)樣品進(jìn)行化驗(yàn),可得恰含有病毒的概率;第二種,先化驗(yàn)一組,結(jié)果含有病毒DNA,再?gòu)闹兄饌(gè)化驗(yàn),恰第一個(gè)樣品含有病毒的概率,利用互斥事件的概率計(jì)算公式即可得出;

(2)設(shè)方案甲化驗(yàn)的次數(shù)為,則可能的取值為1,2,3,4,5,對(duì)應(yīng)的化驗(yàn)費(fèi)為元,利用相互獨(dú)立事件的概率計(jì)算公式可得: , ,

試題解析:

(1)方案乙所需化驗(yàn)恰好為2次的事件有兩種情況:第一種,先化驗(yàn)一組,結(jié)果不含病毒,再?gòu)牧硪唤M中任取一個(gè)樣品進(jìn)行化驗(yàn),則恰含有病毒的概率為,第二種,先化驗(yàn)一組,結(jié)果含病毒,再?gòu)闹兄饌(gè)化驗(yàn),恰第一個(gè)樣品含有病毒的概率為.

所以依據(jù)方案乙所需化驗(yàn)恰好為2次的概率為

(2)設(shè)方案甲化驗(yàn)的次數(shù)為,則可能的取值為1,2,3,4,5,對(duì)應(yīng)的化驗(yàn)費(fèi)用為元,則

, ,

, ,

則其化驗(yàn)費(fèi)用的分布列為

所以(元).

所以甲方案平均需要化驗(yàn)費(fèi)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知自變量x,y滿足則當(dāng)3S5時(shí),z3x2y的最大值的變化范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆河南省鄭州市第一中學(xué)高三上學(xué)期第一次質(zhì)量檢測(cè)數(shù)學(xué)(文)】已知函數(shù)

(1)證明:;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2014高考陜西版文第21題】設(shè)函數(shù).

(1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

(3)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

如圖,邊長(zhǎng)為4的正方形中,點(diǎn)分別是上的點(diǎn),將折起,使兩點(diǎn)重合于.

(1)求證:;

(2)當(dāng)時(shí),

求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

如圖5,已知點(diǎn)是圓心為半徑為1的半圓弧上從點(diǎn)數(shù)起的第一個(gè)三等分點(diǎn),是直徑,,平面,點(diǎn)的中點(diǎn).

1)求二面角的余弦值.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

1)求的值;

(2)若對(duì)于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;

(2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案