【題目】已知自變量xy滿足則當(dāng)3S5時(shí),z3x2y的最大值的變化范圍為________

【答案】[7,8].

【解析】試題分析:先根據(jù)約束條件畫出可行域,設(shè)z=3x+2y,再利用z的幾何意義求最值,只需求出直線z=3x+2y過可行域內(nèi)的點(diǎn)時(shí),從而得到z=3x+2y的最大值即可

試題解析:如圖,由交點(diǎn)為B(4-s,2s-4),其他各交點(diǎn)分別為A(2,0),C(0,s),C′(0,4).

① 當(dāng)3≤s<4時(shí),可行域是四邊形OABC,

此時(shí)7≤z<8;

② 當(dāng)4≤s≤5時(shí),可行域是△OAC′,此時(shí)zmax=8.

由①②可知目標(biāo)函數(shù)z=3x+2y的最大值變化范圍是[7,8].

點(diǎn)晴:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想.這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中, 為自然對(duì)數(shù)的底數(shù).

(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;

(2)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面αβ,在平面α內(nèi)任取一條直線a,在β內(nèi)總存在直線ba,則αβ的位置關(guān)系是____(填“平行”或“相交”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分,第(1)問 5分,第(2)問 5 分)

近年來,微信越來越受歡迎,許多人通過微信表達(dá)自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗(yàn),支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機(jī)對(duì)商場購物的名顧客進(jìn)行統(tǒng)計(jì),其中歲以下占,采用微信支付的占, 歲以上采用微信支付的占

(1)請(qǐng)完成下面列聯(lián)表:

歲以下

歲以上

合計(jì)

使用微信支付

未使用微信支付

合計(jì)

(2)并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認(rèn)為“使用微信支付與年齡有關(guān)”?

參考公式: .

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機(jī),若要擊落敵機(jī),需命中機(jī)首2次或命中機(jī)中3次或命中機(jī)尾1次,已知A每次射擊,命中機(jī)首、機(jī)中、機(jī)尾的概率分別為0.2、0.4、0.1,未命中敵機(jī)的概率為0.3,且各次射擊相互獨(dú)立。若A至多射擊兩次,則他能擊落敵機(jī)的概率為( )

A. 0.23 B. 0.2 C. 0.16 D. 0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知6只小白鼠有1只被病毒感染,需要通過對(duì)其化驗(yàn)病毒來確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).

(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.

(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長無限接近圓的周長,進(jìn)而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長均為圓的半徑

,此時(shí)圓內(nèi)接正六邊形的周長為

,此時(shí)若將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案