【題目】如圖1,在菱形中,,的中點,以為折痕,將折起,使點到達點的位置,且平面平面,如圖2.

(1)求證:;

(2)若的中點,求四面體的體積.

【答案】(1)見證明;(2)

【解析】

1)在圖1中證明BMAD,在圖2中根據(jù)面面垂直的性質(zhì)即可得出A1M⊥平面BCDM,故而得證(2)計算V,則VVVV

1)證明:在圖1中,∵四邊形ABCD是菱形,∠DAB60°,MAD的中點,

ADBM,

故在圖2中,BMA1M,

∵平面A1BM⊥平面BCDM,平面A1BM∩平面BCDMBM

A1M⊥平面BCDM,

BD平面BCDM

A1MBD

2)解:在圖1中,∵ABCD是菱形,ADBM,ADBC

BMBC,且BM,

在圖2中,連接CM,則VSBCMA1M

KA1C的中點,

VVVV

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場從20181月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關(guān)系近似地滿足(其中,且),該商品第x月的進貨單價(單位:元)與x的近似關(guān)系是

1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關(guān)系式;

2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列各項均為正數(shù),Sn是數(shù)列的前n項的和,對任意的,都有.數(shù)列各項都是正整數(shù),,且數(shù)列是等比數(shù)列.

(1) 證明:數(shù)列是等差數(shù)列;

(2) 求數(shù)列的通項公式;

(3)求滿足的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為,為參數(shù))在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=與C1,C2各有一個交點.當=0時,這兩個交點間的距離為2,當=時,這兩個交點重合.

1)分別說明C1,C2是什么曲線,并求出a與b的值;

(2)設(shè)當=時,l與C1,C2的交點分別為A1,B1,當=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,分別為,的中點, 上異于,的點, .

1)證明:平面平面;

2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是邊長為2的菱形,平面,,

1)證明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案