4.已知集合A={x|x2+2x≤0},集合B={0,1,2},則A∩B={0}.

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:x(x+2)≤0,
解得:-2≤x≤0,即A=[-2,0],
∵B={0,1,2},
∴A∩B={0},
故答案為:{0}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.編輯如下運(yùn)算程序:1@1=2,m@n=q,m@(n+1)=q+2.
(1)設(shè)數(shù)列{an}的各項(xiàng)滿足an=1@n,求a2,a3,a4;
(2)由(1)猜想{an}的通項(xiàng)公式;
(3)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖所示,在正方形ABCD中,點(diǎn)E為邊AB的中點(diǎn),線段AC與DE交于點(diǎn)P,則tan∠APD=-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若a=3,b=4,sinB=$\frac{2}{3}$,則角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)命題p:?x>0,3x>2x,則¬p為(  )
A.?x>0,3x≤2xB.?x≤0,3x>2xC.?x>0,3x≤2xD.?x≤0,3x≤2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}(x<0)}\\{(2-a)x+\frac{2a}{3}(x≥0)}\end{array}\right.$滿足對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則a的取值范圍是[$\frac{3}{2}$,2).(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某幾何體的三視圖如圖所示,則該幾何體的體積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,己知三棱錐P-ABC,底面是邊長(zhǎng)為2的正三角形,平面PAB⊥平面ABC,PA=PB=$\sqrt{2}$,D為BC中點(diǎn).
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求點(diǎn)B到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD,E為線段PA的中點(diǎn).
(Ⅰ)求證:BE∥平面PCD;
(Ⅱ)若PA=AD=2,求點(diǎn)E到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案